language: "en" | |
tags: | |
- paraphrase-generation | |
- text-generation | |
- Conditional Generation | |
inference: false | |
β | |
# Paraphrase-Generation | |
β | |
## Model description | |
β | |
T5 Model for generating paraphrases of english sentences. Trained on the [Google PAWS](https://github.com/google-research-datasets/paws) dataset. | |
β | |
## How to use | |
β | |
PyTorch and TF models available | |
β | |
```python | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
β | |
tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws") | |
model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws") | |
β | |
sentence = "This is something which i cannot understand at all" | |
text = "paraphrase: " + sentence + " </s>" | |
encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt") | |
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") | |
outputs = model.generate( | |
input_ids=input_ids, attention_mask=attention_masks, | |
max_length=256, | |
do_sample=True, | |
top_k=120, | |
top_p=0.95, | |
early_stopping=True, | |
num_return_sequences=5 | |
) | |
for output in outputs: | |
line = tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True) | |
print(line) | |
β | |
``` | |
For more reference on training your own T5 model or using this model, do check out [Paraphrase Generation](https://github.com/Vamsi995/Paraphrase-Generator). | |