Snowflake-snowflake-arctic-embed-l_20241127-010327
This model is a fine-tuned version of Snowflake/snowflake-arctic-embed-l on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0222
- [email protected]: 0.9872
- [email protected]: 0.9892
- [email protected]: 0.9902
- [email protected]: 0.9909
- [email protected]: 0.9914
- [email protected]: 0.9918
- [email protected]: 0.9921
- [email protected]: 0.9924
- [email protected]: 0.9926
- [email protected]: 0.9928
- [email protected]: 0.9930
- [email protected]: 0.9932
- [email protected]: 0.9933
- [email protected]: 0.9935
- [email protected]: 0.9936
- [email protected]: 0.9937
- [email protected]: 0.9939
- [email protected]: 0.9940
- [email protected]: 0.9941
- [email protected]: 0.9942
- [email protected]: 0.9943
- [email protected]: 0.9944
- [email protected]: 0.9945
- [email protected]: 0.9945
- [email protected]: 0.9946
- [email protected]: 0.9947
- [email protected]: 0.9948
- [email protected]: 0.9948
- [email protected]: 0.9949
- [email protected]: 0.9950
- [email protected]: 0.9950
- [email protected]: 0.9951
- [email protected]: 0.9952
- [email protected]: 0.9952
- [email protected]: 0.9953
- [email protected]: 0.9953
- [email protected]: 0.9954
- [email protected]: 0.9954
- [email protected]: 0.9955
- [email protected]: 0.9955
- [email protected]: 0.9956
- [email protected]: 0.9956
- [email protected]: 0.9956
- [email protected]: 0.9957
- [email protected]: 0.9957
- [email protected]: 0.9958
- [email protected]: 0.9958
- [email protected]: 0.9958
- [email protected]: 0.9959
- [email protected]: 0.9959
- [email protected]: 0.9960
- [email protected]: 0.9960
- [email protected]: 0.9960
- [email protected]: 0.9961
- [email protected]: 0.9961
- [email protected]: 0.9961
- [email protected]: 0.9962
- [email protected]: 0.9962
- [email protected]: 0.9962
- [email protected]: 0.9963
- [email protected]: 0.9963
- [email protected]: 0.9963
- [email protected]: 0.9964
- [email protected]: 0.9964
- [email protected]: 0.9964
- [email protected]: 0.9965
- [email protected]: 0.9965
- [email protected]: 0.9965
- [email protected]: 0.9966
- [email protected]: 0.9966
- [email protected]: 0.9966
- [email protected]: 0.9967
- [email protected]: 0.9967
- [email protected]: 0.9967
- [email protected]: 0.9968
- [email protected]: 0.9968
- [email protected]: 0.9968
- [email protected]: 0.9969
- [email protected]: 0.9969
- [email protected]: 0.9969
- [email protected]: 0.9970
- [email protected]: 0.9970
- [email protected]: 0.9970
- [email protected]: 0.9971
- [email protected]: 0.9971
- [email protected]: 0.9971
- [email protected]: 0.9972
- [email protected]: 0.9972
- [email protected]: 0.9973
- [email protected]: 0.9973
- [email protected]: 0.9973
- [email protected]: 0.9974
- [email protected]: 0.9975
- [email protected]: 0.9975
- [email protected]: 0.9976
- [email protected]: 0.9977
- [email protected]: 0.9978
- [email protected]: 0.9979
- [email protected]: 0.9981
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0097 | 0.9995 | 1806 | 0.0440 | 0.9681 | 0.9732 | 0.9761 | 0.9781 | 0.9796 | 0.9808 | 0.9818 | 0.9826 | 0.9833 | 0.9838 | 0.9843 | 0.9848 | 0.9852 | 0.9856 | 0.9859 | 0.9863 | 0.9865 | 0.9868 | 0.9871 | 0.9873 | 0.9875 | 0.9877 | 0.9879 | 0.9881 | 0.9883 | 0.9884 | 0.9886 | 0.9887 | 0.9889 | 0.9890 | 0.9891 | 0.9892 | 0.9893 | 0.9894 | 0.9895 | 0.9897 | 0.9898 | 0.9899 | 0.9900 | 0.9901 | 0.9902 | 0.9902 | 0.9903 | 0.9904 | 0.9905 | 0.9906 | 0.9906 | 0.9907 | 0.9908 | 0.9909 | 0.9909 | 0.9910 | 0.9911 | 0.9911 | 0.9912 | 0.9913 | 0.9914 | 0.9914 | 0.9915 | 0.9916 | 0.9917 | 0.9917 | 0.9918 | 0.9918 | 0.9919 | 0.9920 | 0.9921 | 0.9921 | 0.9922 | 0.9923 | 0.9923 | 0.9924 | 0.9925 | 0.9925 | 0.9926 | 0.9927 | 0.9928 | 0.9928 | 0.9929 | 0.9930 | 0.9931 | 0.9931 | 0.9932 | 0.9933 | 0.9934 | 0.9935 | 0.9936 | 0.9937 | 0.9938 | 0.9939 | 0.9940 | 0.9942 | 0.9943 | 0.9945 | 0.9946 | 0.9949 | 0.9951 | 0.9955 | 0.9960 |
0.0071 | 1.9995 | 3613 | 0.0288 | 0.9830 | 0.9854 | 0.9870 | 0.9879 | 0.9885 | 0.9891 | 0.9895 | 0.9899 | 0.9903 | 0.9905 | 0.9908 | 0.9910 | 0.9912 | 0.9914 | 0.9916 | 0.9918 | 0.9919 | 0.9921 | 0.9922 | 0.9923 | 0.9924 | 0.9926 | 0.9927 | 0.9928 | 0.9929 | 0.9930 | 0.9931 | 0.9932 | 0.9933 | 0.9934 | 0.9935 | 0.9935 | 0.9936 | 0.9937 | 0.9937 | 0.9938 | 0.9939 | 0.9939 | 0.9940 | 0.9940 | 0.9941 | 0.9941 | 0.9942 | 0.9943 | 0.9943 | 0.9944 | 0.9944 | 0.9945 | 0.9945 | 0.9946 | 0.9946 | 0.9947 | 0.9947 | 0.9948 | 0.9948 | 0.9949 | 0.9949 | 0.9950 | 0.9950 | 0.9951 | 0.9951 | 0.9951 | 0.9952 | 0.9952 | 0.9953 | 0.9953 | 0.9953 | 0.9954 | 0.9954 | 0.9955 | 0.9955 | 0.9955 | 0.9956 | 0.9956 | 0.9957 | 0.9957 | 0.9957 | 0.9958 | 0.9958 | 0.9959 | 0.9959 | 0.9960 | 0.9960 | 0.9960 | 0.9961 | 0.9961 | 0.9962 | 0.9963 | 0.9963 | 0.9964 | 0.9964 | 0.9965 | 0.9966 | 0.9967 | 0.9967 | 0.9968 | 0.9970 | 0.9972 | 0.9974 |
0.0043 | 2.9984 | 5418 | 0.0222 | 0.9872 | 0.9892 | 0.9902 | 0.9909 | 0.9914 | 0.9918 | 0.9921 | 0.9924 | 0.9926 | 0.9928 | 0.9930 | 0.9932 | 0.9933 | 0.9935 | 0.9936 | 0.9937 | 0.9939 | 0.9940 | 0.9941 | 0.9942 | 0.9943 | 0.9944 | 0.9945 | 0.9945 | 0.9946 | 0.9947 | 0.9948 | 0.9948 | 0.9949 | 0.9950 | 0.9950 | 0.9951 | 0.9952 | 0.9952 | 0.9953 | 0.9953 | 0.9954 | 0.9954 | 0.9955 | 0.9955 | 0.9956 | 0.9956 | 0.9956 | 0.9957 | 0.9957 | 0.9958 | 0.9958 | 0.9958 | 0.9959 | 0.9959 | 0.9960 | 0.9960 | 0.9960 | 0.9961 | 0.9961 | 0.9961 | 0.9962 | 0.9962 | 0.9962 | 0.9963 | 0.9963 | 0.9963 | 0.9964 | 0.9964 | 0.9964 | 0.9965 | 0.9965 | 0.9965 | 0.9966 | 0.9966 | 0.9966 | 0.9967 | 0.9967 | 0.9967 | 0.9968 | 0.9968 | 0.9968 | 0.9969 | 0.9969 | 0.9969 | 0.9970 | 0.9970 | 0.9970 | 0.9971 | 0.9971 | 0.9971 | 0.9972 | 0.9972 | 0.9973 | 0.9973 | 0.9973 | 0.9974 | 0.9975 | 0.9975 | 0.9976 | 0.9977 | 0.9978 | 0.9979 | 0.9981 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 27
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Unlearning/Snowflake-snowflake-arctic-embed-l_20241127-010327
Base model
Snowflake/snowflake-arctic-embed-l