Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

base_model: ./Qwen_QwQ-32B/
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

trust_remote_code: true

load_in_8bit: true
load_in_4bit: false
strict: false

chat_template: tokenizer_default

datasets:
  - path: Undi95/QwQ-dataset
    type: chat_template
    chat_template: tokenizer_default
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    roles:
      user: ["human", "user"]
      assistant: ["gpt", "assistant"]
      system: ["system"]
      tool: ["tool"]
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./out

sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 256
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: qwq-rp
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: unsloth
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 20
saves_per_epoch: 2
debug:
deepspeed:
weight_decay: 0.1

out

This model was trained from scratch on the Undi95/QwQ-dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0077

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
0.7216 1.0 649 1.0138
0.6349 1.9977 1296 1.0077

Framework versions

  • PEFT 0.14.0
  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
13
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Undi95/QwQ-RP-LoRA

Base model

Qwen/Qwen2.5-32B
Finetuned
Qwen/QwQ-32B
Adapter
(9)
this model