widget: - text: "I never imagined a pill could cause so much pain. It started with a dull ache, then my muscles felt like they were on fire. Breathing became a struggle, each breath felt like a battle. It's terrifying how quickly things can change when you least expect it."

This model takes text (narrative of reasctions to medications) as input and returns a predicted severity score for the reaction (LABEL_1 is severe reaction). Please do NOT use for medical diagnosis. Example usage:

import torch
import tensorflow as tf
from transformers import RobertaTokenizer, RobertaModel
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("UVA-MSBA/Mod4_T12")  
model = AutoModelForSequenceClassification.from_pretrained("UVA-MSBA/Mod4_T12")

def adr_predict(x):
    encoded_input = tokenizer(x, return_tensors='pt')
    output = model(**encoded_input)
    scores = output[0][0].detach().numpy()
    scores = tf.nn.softmax(scores)
    return scores.numpy()[1]

sentence = "I have an extremely bad headache."

adr_predict(sentence)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.