Chimera-1.0
Collection
5 items
โข
Updated
Clone this repository:
git clone https://github.com/UniModal4Reasoning/Chimera.git
Create a conda virtual environment and activate it:
conda create -n chimera python=3.9 -y
conda activate chimera
Install dependencies using requirements.txt
:
pip install -r requirements.txt
Install other requirements:
cd chimera/
pip install --upgrade pip # enable PEP 660 support
pip install -e .
Install flash-attn==2.3.4
:
pip install flash-attn==2.3.4 --no-build-isolation
Alternatively you can compile from source:
git clone https://github.com/Dao-AILab/flash-attention.git
cd flash-attention
git checkout v2.3.4
python setup.py install
from chimera.chimera_infer import Chimera4easyuse
import torch
from PIL import Image
# prepare model
# model_path = "U4R/Chimera-Reasoner-2B"
# model_path = "U4R/Chimera-Reasoner-4B"
model_path = "U4R/Chimera-Reasoner-8B"
generation_config = dict(max_new_tokens=256, do_sample=False)
model = Chimera4easyuse(model_path, dtype = torch.bfloat16, generation_config= generation_config)
# prepare input
image_path = "path/to/image"
user_prompt = "<image>\nuser prompt"
input_image = Image.open(image_path).convert('RGB')
response = model.get_response(user_prompt, [input_image])
print(response)
from chimera.chimera_infer import Chimera4easyuse
import torch
from PIL import Image
# prepare model
model_path = "U4R/Chimera-Extractor-1B"
generation_config = dict(max_new_tokens=4096, do_sample=False, no_repeat_ngram_size = 20)
model = Chimera4easyuse(model_path, dtype = torch.float16, generation_config= generation_config)
# prepare input
image_path = "path/to/document"
user_prompt = "<image>\nAs a smart PDF to Markdown conversion tool, please convert the content of the provided PDF into Markdown format."
input_image = Image.open(image_path).convert('RGB')
response = model.get_response(user_prompt, [input_image])
print(response)
Chimera is released under the Apache License 2.0
If you find our models / code / papers useful in your research, please consider giving โญ and citations ๐, thx :)
@misc{peng2024chimeraimprovinggeneralistmodel,
title={Chimera: Improving Generalist Model with Domain-Specific Experts},
author={Tianshuo Peng and Mingsheng Li and Hongbin Zhou and Renqiu Xia and Renrui Zhang and Lei Bai and Song Mao and Bin Wang and Conghui He and Aojun Zhou and Botian Shi and Tao Chen and Bo Zhang and Xiangyu Yue},
year={2024},
eprint={2412.05983},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.05983},
}
If you encounter any issues or have questions, please feel free to contact us via [email protected] or [email protected].