TunahanGokcimen's picture
Training complete
485db91 verified
metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
  - generated_from_trainer
datasets:
  - bionlp2004
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-cased-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: bionlp2004
          type: bionlp2004
          config: bionlp2004
          split: validation
          args: bionlp2004
        metrics:
          - name: Precision
            type: precision
            value: 0.7436025257560651
          - name: Recall
            type: recall
            value: 0.8058707005222402
          - name: F1
            type: f1
            value: 0.7734854377322617
          - name: Accuracy
            type: accuracy
            value: 0.9356447830424587

distilbert-base-cased-ner

This model is a fine-tuned version of distilbert-base-cased on the bionlp2004 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2048
  • Precision: 0.7436
  • Recall: 0.8059
  • F1: 0.7735
  • Accuracy: 0.9356

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2313 1.0 2078 0.2127 0.7120 0.7810 0.7449 0.9287
0.184 2.0 4156 0.1992 0.7258 0.7999 0.7611 0.9353
0.1471 3.0 6234 0.2048 0.7436 0.8059 0.7735 0.9356

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1