|
import math |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from transformers import PreTrainedModel |
|
from .config import GPTConfig |
|
|
|
|
|
|
|
|
|
|
|
|
|
class Rotary(torch.nn.Module): |
|
|
|
def __init__(self, dim, base=10000): |
|
super().__init__() |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
self.seq_len_cached = None |
|
self.cos_cached = None |
|
self.sin_cached = None |
|
|
|
def forward(self, x): |
|
seq_len = x.shape[1] |
|
if seq_len != self.seq_len_cached: |
|
self.seq_len_cached = seq_len |
|
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq) |
|
freqs = torch.outer(t, self.inv_freq).to(x.device) |
|
self.cos_cached = freqs.cos() |
|
self.sin_cached = freqs.sin() |
|
return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :] |
|
|
|
def apply_rotary_emb(x, cos, sin): |
|
assert x.ndim == 4 |
|
d = x.shape[3]//2 |
|
x1 = x[..., :d] |
|
x2 = x[..., d:] |
|
y1 = x1 * cos + x2 * sin |
|
y2 = x1 * (-sin) + x2 * cos |
|
return torch.cat([y1, y2], 3) |
|
|
|
def rmsnorm(x0, eps=1e-6): |
|
x = x0.float() |
|
x = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps) |
|
return x.type_as(x0) |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
""" Root Mean Square Normalization """ |
|
def __init__(self, dim: int, weight: bool = False, bias: bool = False, eps: float = 1e-6): |
|
super().__init__() |
|
self.eps = eps |
|
|
|
if weight: |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
else: |
|
self.register_parameter("weight", None) |
|
|
|
if bias: |
|
self.bias = nn.Parameter(torch.zeros(dim)) |
|
else: |
|
self.register_parameter("bias", None) |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
output = self._norm(x.float()).type_as(x) |
|
if self.weight is not None: |
|
output = output * self.weight |
|
if self.bias is not None: |
|
output = output + self.bias |
|
return output |
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.head_dim = self.n_embd // self.n_head |
|
assert self.n_embd % self.n_head == 0 |
|
|
|
self.c_attn = nn.Linear(self.n_embd, 3 * self.n_embd, bias=False) |
|
|
|
self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False) |
|
self.rotary = Rotary(self.head_dim) |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
|
|
qkv = self.c_attn(x) |
|
q, k, v = qkv.split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, self.head_dim) |
|
q = q.view(B, T, self.n_head, self.head_dim) |
|
v = v.view(B, T, self.n_head, self.head_dim) |
|
cos, sin = self.rotary(q) |
|
q = apply_rotary_emb(q, cos, sin) |
|
k = apply_rotary_emb(k, cos, sin) |
|
y = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True) |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
y = self.c_proj(y) |
|
return y |
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, dim, eps=1e-5): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
norm = torch.norm(x, dim=-1, keepdim=True) |
|
return self.weight * x / (norm + self.eps) |
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.attn = CausalSelfAttention(config) |
|
self.mlp = MLP(config) |
|
self.attn_scale = (1 / (2 * config.n_layer)**0.5) |
|
|
|
def forward(self, x): |
|
x = x + self.attn_scale * self.attn(rmsnorm(x)) |
|
x = x + self.mlp(rmsnorm(x)) |
|
return x |
|
|
|
class MLP(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) |
|
self.gelu = nn.GELU() |
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) |
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
def forward(self, x): |
|
x = self.c_fc(x) |
|
x = self.gelu(x) |
|
x = self.c_proj(x) |
|
x = self.dropout(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
class GPT(PreTrainedModel): |
|
config_class = GPTConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = nn.ModuleDict(dict( |
|
wte=nn.Embedding(config.vocab_size, config.n_embd), |
|
drop=nn.Dropout(config.dropout), |
|
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
)) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
for pn, p in self.named_parameters(): |
|
if pn.endswith('c_proj.weight'): |
|
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer)) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, input_ids, labels=None): |
|
tok_emb = self.transformer.wte(input_ids) |
|
x = self.transformer.drop(tok_emb) |
|
|
|
for block in self.transformer.h: |
|
x = block(x) |
|
x = rmsnorm(x) |
|
|
|
logits = self.lm_head(x) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1) |
|
|
|
return {'loss': loss, 'logits': logits} if loss is not None else {'logits': logits} |
|
|
|
@torch.no_grad() |
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): |
|
for _ in range(max_new_tokens): |
|
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] |
|
logits = self(idx_cond)['logits'] |
|
logits = logits[:, -1, :] / temperature |
|
if top_k is not None: |
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
logits[logits < v[:, [-1]]] = -float('Inf') |
|
probs = F.softmax(logits, dim=-1) |
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
idx = torch.cat((idx, idx_next), dim=1) |
|
return idx |
|
|