File size: 7,179 Bytes
56216b5
 
 
 
 
ffe532d
56216b5
7eef20c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56216b5
 
 
 
 
 
 
 
 
 
 
7eef20c
 
 
 
 
 
 
 
 
 
 
 
 
 
56216b5
 
7eef20c
 
 
 
56216b5
 
7eef20c
 
 
 
 
 
56216b5
7eef20c
 
 
56216b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers import PreTrainedModel
from .config import GPTConfig


################################
###         Layers           ###
################################

class Rotary(torch.nn.Module):

    def __init__(self, dim, base=10000):
        super().__init__()
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq)
        self.seq_len_cached = None
        self.cos_cached = None
        self.sin_cached = None

    def forward(self, x):
        seq_len = x.shape[1]
        if seq_len != self.seq_len_cached:
            self.seq_len_cached = seq_len
            t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
            freqs = torch.outer(t, self.inv_freq).to(x.device)
            self.cos_cached = freqs.cos()
            self.sin_cached = freqs.sin()
        return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]

def apply_rotary_emb(x, cos, sin):
    assert x.ndim == 4 # multihead attention
    d = x.shape[3]//2
    x1 = x[..., :d]
    x2 = x[..., d:]
    y1 = x1 * cos + x2 * sin
    y2 = x1 * (-sin) + x2 * cos
    return torch.cat([y1, y2], 3)

def rmsnorm(x0, eps=1e-6):
    x = x0.float()
    x = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
    return x.type_as(x0)


class RMSNorm(nn.Module):
    """ Root Mean Square Normalization """
    def __init__(self, dim: int, weight: bool = False, bias: bool = False, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        
        if weight:
            self.weight = nn.Parameter(torch.ones(dim))
        else:
            self.register_parameter("weight", None)

        if bias:
            self.bias = nn.Parameter(torch.zeros(dim))
        else:
            self.register_parameter("bias", None)

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        if self.weight is not None:
            output = output * self.weight
        if self.bias is not None:
            output = output + self.bias
        return output


class CausalSelfAttention(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.head_dim = self.n_embd // self.n_head
        assert self.n_embd % self.n_head == 0
        # key, query, value projections for all heads, but in a batch
        self.c_attn = nn.Linear(self.n_embd, 3 * self.n_embd, bias=False)
        # output projection
        self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)
        self.rotary = Rotary(self.head_dim)

    def forward(self, x):
        B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        qkv = self.c_attn(x)
        q, k, v = qkv.split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, self.head_dim)
        q = q.view(B, T, self.n_head, self.head_dim)
        v = v.view(B, T, self.n_head, self.head_dim)
        cos, sin = self.rotary(q)
        q = apply_rotary_emb(q, cos, sin)
        k = apply_rotary_emb(k, cos, sin)
        y = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True)
        y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
        # output projection
        y = self.c_proj(y)
        return y

class RMSNorm(nn.Module):
    def __init__(self, dim, eps=1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        norm = torch.norm(x, dim=-1, keepdim=True)
        return self.weight * x / (norm + self.eps)

class Block(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.attn = CausalSelfAttention(config)
        self.mlp = MLP(config)
        self.attn_scale = (1 / (2 * config.n_layer)**0.5)

    def forward(self, x):
        x = x + self.attn_scale * self.attn(rmsnorm(x))
        x = x + self.mlp(rmsnorm(x))
        return x

class MLP(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.c_fc    = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
        self.gelu    = nn.GELU()
        self.c_proj  = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x


################################
###          Model           ###
################################

class GPT(PreTrainedModel):
    config_class = GPTConfig

    def __init__(self, config):
        super().__init__(config)
        self.transformer = nn.ModuleDict(dict(
            wte=nn.Embedding(config.vocab_size, config.n_embd),
            drop=nn.Dropout(config.dropout),
            h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        self.apply(self._init_weights)

        # GPT-2 style scaled init
        for pn, p in self.named_parameters():
            if pn.endswith('c_proj.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, input_ids, labels=None):
        tok_emb = self.transformer.wte(input_ids)
        x = self.transformer.drop(tok_emb)

        for block in self.transformer.h:
            x = block(x)
        x = rmsnorm(x)

        logits = self.lm_head(x)

        loss = None
        if labels is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1)

        return {'loss': loss, 'logits': logits} if loss is not None else {'logits': logits}

    @torch.no_grad()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        for _ in range(max_new_tokens):
            idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
            logits = self(idx_cond)['logits']
            logits = logits[:, -1, :] / temperature
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            probs = F.softmax(logits, dim=-1)
            idx_next = torch.multinomial(probs, num_samples=1)
            idx = torch.cat((idx, idx_next), dim=1)
        return idx