Tsunami Model

Tsunami-0.5x-7B-Instruct

TSUNAMI: Transformative Semantic Understanding and Natural Augmentation Model for Intelligence.

TSUNAMI full name was created by ChatGPT.


infomation

Tsunami-0.5x-7B-Instruct is Thai Large Language Model that fine-tuned from Qwen2.5-7B around 100,000 rows in Thai dataset.


Prompt Template

This model uses ChatML prompt template:

<|im_start|>system
{System}<|im_end|>
<|im_start|>user
{User}<|im_end|>
<|im_start|>assistant
{Assistant}

How to use


from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "Tsunami-th/Tsunami-0.5x-7B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "สวัสดีครับ"}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

inputs = tokenizer(text, return_tensors="pt")
inputs = inputs.to(model.device)
with torch.no_grad():
   output = model.generate(**inputs, max_new_tokens=512)

response = tokenizer.decode(output[0, len(inputs['input_ids'][0]):], skip_special_tokens=True)

Author


  • Tsunami-0.5x-7B-Instruct is the version 0.5x that did not train on the whole dataset.
  • Tsunami-1.0-7B-Instruct is coming soon.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 29.80
IFEval (0-Shot) 70.99
BBH (3-Shot) 37.36
MATH Lvl 5 (4-Shot) 4.83
GPQA (0-shot) 8.61
MuSR (0-shot) 18.57
MMLU-PRO (5-shot) 38.42
Downloads last month
126
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Tsunami-th/Tsunami-0.5x-7B-Instruct

Base model

Qwen/Qwen2.5-7B
Finetuned
(201)
this model
Merges
17 models
Quantizations
3 models

Evaluation results