metadata
base_model: crestf411/MN-SlushoMix
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
license: apache-2.0
Triangle104/MN-SlushoMix-Q4_K_S-GGUF
This model was converted to GGUF format from crestf411/MN-SlushoMix
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Model details:
MN-Slush + NemoMix Unleashed.
models:
- model: slush-stage1 parameters: weight: 1 density: 1
- model: slush-stage2 parameters: weight: 0.7 density: 1
- model: MarinaraSpaghetti/NemoMix-Unleashed-12B parameters: weight: 0.9 density: 1
- model: mistralai/Mistral-Nemo-Instruct-2407 parameters: weight: 1 density: 1 merge_method: ties base_model: mistralai/Mistral-Nemo-Base-2407 parameters: weight: 1 density: 1 normalize: true int8_mask: true tokenizer_source: mistralai/Mistral-Nemo-Instruct-2407 dtype: bfloat16
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/MN-SlushoMix-Q4_K_S-GGUF --hf-file mn-slushomix-q4_k_s.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/MN-SlushoMix-Q4_K_S-GGUF --hf-file mn-slushomix-q4_k_s.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/MN-SlushoMix-Q4_K_S-GGUF --hf-file mn-slushomix-q4_k_s.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/MN-SlushoMix-Q4_K_S-GGUF --hf-file mn-slushomix-q4_k_s.gguf -c 2048