SentenceTransformer based on sentence-transformers/multi-qa-MiniLM-L6-dot-v1

This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-MiniLM-L6-dot-v1. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Trelis/multi-qa-MiniLM-L6-dot-v1-ft-pairs-4-cst-epoch-s1-overlap")
# Run inference
sentences = [
    'What happens if a team is leading at the end of the two-minute period of extra time?',
    '24. 1. 2 the drop - off commences with a tap from the centre of the halfway line by the team that did not commence the match with possession. 24. 1. 3 the drop - off will commence with a two ( 2 ) minute period of extra time. 24. 1. 4 should a team be leading at the expiration of the two ( 2 ) minute period of extra time then that team will be declared the winner and match complete. 24. 1. 5 should neither team be leading at the expiration of two ( 2 ) minutes, a signal is given and the match will pause at the next touch or dead ball. each team will then remove another player from the field of play. 24. 1. 6 the match will recommence immediately after the players have left the field at the same place where it paused ( i. e. the team retains possession at the designated number of touches, or at change of possession due to some infringement or the sixth touch ) and the match will continue until a try is scored. 24. 1. 7 there is no time off during the drop - off and the clock does not stop at the two ( 2 ) minute interval.',
    '7. 7 the tap to commence or recommence play must be performed without delay. ruling = a penalty to the non - offending team at the centre of the halfway line. 8 match duration 8. 1 a match is 40 minutes in duration, consisting of two ( 2 ) x 20 minute halves with a half time break. 8. 1. 1 there is no time off for injury during a match. 8. 2 local competition and tournament conditions may vary the duration of a match. 8. 3 when time expires, play is to continue until the next touch or dead ball and end of play is signaled by the referee. 8. 3. 1 should a penalty be awarded during this period, the penalty is to be taken. 8. 4 if a match is abandoned in any circumstances other than those referred to in clause 24. 1. 6 the nta or nta competition provider in its sole discretion shall determine the result of the match. 9 possession 9. 1 the team with the ball is entitled to six ( 6 ) touches prior to a change of possession. 9. 2 on the change of possession due to an intercept, the first touch will be zero ( 0 ) touch.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: constant
  • warmup_ratio: 0.3

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: constant
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.3
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss
0.2857 2 1.7892 -
0.5714 4 1.5998 1.3002
0.8571 6 1.5637 -
1.1429 8 1.3347 1.1748
1.4286 10 1.4256 -
1.7143 12 1.2205 1.1085
2.0 14 1.1307 -
2.2857 16 1.119 1.0558
2.5714 18 1.2639 -
2.8571 20 1.2834 1.0108
3.1429 22 0.9248 -
3.4286 24 1.1527 1.0074
3.7143 26 0.8702 -
4.0 28 0.725 1.0124

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.3
  • PyTorch: 2.1.1+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.17.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
9
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Trelis/multi-qa-MiniLM-L6-dot-v1-ft-pairs-4-cst-epoch-s1-overlap

Finetuned
(5)
this model