|
--- |
|
license: apache-2.0 |
|
tags: |
|
- qwen1.5 |
|
- function-calling |
|
- zero-shot |
|
--- |
|
# Qwen1.5 one shot chat template for function calling |
|
|
|
This repo contains a tokenizer with a custom chat template in the tokenizer_config.json file. |
|
|
|
The custom chat template can be used - via 'tokenizer.apply_chat_template' - to format an array of messages. |
|
|
|
For example: |
|
``` |
|
function_metadata = [ |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "get_current_weather", |
|
"description": "This function gets the current weather in a given city", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"city": { |
|
"type": "string", |
|
"description": "The city, e.g., San Francisco" |
|
}, |
|
"format": { |
|
"type": "string", |
|
"enum": ["celsius", "fahrenheit"], |
|
"description": "The temperature unit to use." |
|
} |
|
}, |
|
"required": ["city"] |
|
} |
|
} |
|
}, |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "get_clothes", |
|
"description": "This function provides a suggestion of clothes to wear based on the current weather", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"temperature": { |
|
"type": "string", |
|
"description": "The temperature, e.g., 15 C or 59 F" |
|
}, |
|
"condition": { |
|
"type": "string", |
|
"description": "The weather condition, e.g., 'Cloudy', 'Sunny', 'Rainy'" |
|
} |
|
}, |
|
"required": ["temperature", "condition"] |
|
} |
|
} |
|
} |
|
] |
|
|
|
# Comment out later messages to test various stages of generation. |
|
|
|
sample_messages = [ |
|
# System messages are not supported by default |
|
# { |
|
# "role": "system", |
|
# "content": "you are a helpful assistant" |
|
# }, |
|
{ |
|
"role": "function_metadata", |
|
"content": "FUNCTION_METADATA" |
|
}, |
|
{ |
|
"role": "user", |
|
"content": "What is the current weather in London?" |
|
}, |
|
# { |
|
# "role": "function_call", |
|
# "content": "{\n \"name\": \"get_current_weather\",\n \"arguments\": {\n \"city\": \"London\"\n }\n}" |
|
# }, |
|
# { |
|
# "role": "function_response", |
|
# "content": "{\n \"temperature\": \"15 C\",\n \"condition\": \"Cloudy\"\n}" |
|
# }, |
|
# { |
|
# "role": "assistant", |
|
# "content": "The current weather in London is Cloudy with a temperature of 15 Celsius.<|end_of_turn|>" |
|
# }, |
|
# { |
|
# "role": "user", |
|
# "content": "That's great. Now say hello." |
|
# }, |
|
# { |
|
# "role": "assistant", |
|
# "content": "Hello!" |
|
# } |
|
] |
|
|
|
# Iterate through each message in the list |
|
for message in sample_messages: |
|
if message['role'] == 'function_metadata': |
|
# Replace 'FUNCTION_METADATA' with 'function_metadata' in the content |
|
message['content'] = message['content'].replace('FUNCTION_METADATA', json.dumps(function_metadata, indent=4)) |
|
|
|
# View the template applied without tokenization |
|
prompt = tokenizer.apply_chat_template(sample_messages, tokenize=False, add_generation_prompt=True) |
|
print(prompt) |
|
``` |
|
|
|
This will provide a prompt format for doing zero-shot function calling, for example using a TGI api. |
|
|
|
Alternatively, when deploying a vLLM endpoint, this repo id may be passed as the tokenizer for a Qwen1.5 chat model, and the chat template will be applied. In this case, you simply need to prepare your array of messages as per above. |