See axolotl config
axolotl version: 0.8.0.dev0
# === Start-up Commands ===
# curl -LsSf https://astral.sh/uv/install.sh | sh
# export PATH="$HOME/.local/bin:$PATH"
# git clone https://github.com/axolotl-ai-cloud/axolotl
# cd axolotl
# git checkout d8b4027200de0fe60f4ae0a71272c1a8cb2888f7
# uv venv
# source .venv/bin/activate
# uv pip install packaging ninja setuptools ftfy deepspeed huggingface_hub[cli,hf_transfer]
# uv pip install "cut-cross-entropy[transformers] @ git+https://github.com/strangedove/ml-cross-entropy.git"
# uv pip install apollo-torch
# uv pip install --no-build-isolation -e .[flash-attn]
# uv pip install git+https://github.com/huggingface/transformers.git
# export HF_HUB_ENABLE_HF_TRANSFER=1
# huggingface-cli login --token $hf_key && wandb login $wandb_key
# axolotl preprocess qwen21-pretrain.yml
# axolotl train qwen21-pretrain.yml
# curl -LsSf https://astral.sh/uv/install.sh | sh && export PATH="$HOME/.local/bin:$PATH" && git clone https://github.com/axolotl-ai-cloud/axolotl && uv venv && source .venv/bin/activate && cd axolotl && git checkout 9f00465a5cb2349c23853c4a020a928709e506f2 && uv pip install torch==2.5.1 packaging ninja setuptools ftfy deepspeed huggingface_hub[cli,hf_transfer] && uv pip install "cut-cross-entropy[transformers] @ git+https://github.com/strangedove/ml-cross-entropy.git@gemma3" && uv pip install apollo-torch && uv pip install --no-build-isolation -e .[flash-attn] && uv pip install git+https://github.com/huggingface/transformers.git@c9d1e5238a752813ba91a8751a638a09b5efbb73 && export HF_HUB_ENABLE_HF_TRANSFER=1 && cd .. && huggingface-cli login --token $hf_key && wandb login $wandb_key
# === Model Configuration ===
base_model: unsloth/gemma-3-4b-it
load_in_8bit: true
load_in_4bit: false
# === HF Configuration ===
hub_model_id: ToastyPigeon/g3-4b-it-creative-qlora
hub_strategy: "every_save"
# === Training Setup ===
num_epochs: 1
micro_batch_size: 3
gradient_accumulation_steps: 6
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
# === Evaluation ===
val_set_size: 100
evals_per_epoch: 5
#eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: true
#eval_strategy: "no"
# === LoRA Configuration ===
adapter: lora
lora_model_dir:
lora_r: 64
lora_alpha: 64
lora_dropout: 0.5
lora_target_linear:
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
#lora_mlp_kernel: true
#lora_qkv_kernel: true
#lora_o_kernel: true
# === Hyperparameter Configuration ===
#optimizer: apollo_adamw_layerwise
optimizer: paged_adamw_8bit
# Apollo-mini configuration:
#optim_args: "proj=random,rank=1,scale=128.0,scale_type=tensor,update_proj_gap=200"
# Regular Apollo configuration:
# optim_args:
#optim_target_modules: all_linear
learning_rate: 1e-5
lr_scheduler: rex
weight_decay: 0.01
#warmup_ratio: 0.05
# === Data Configuration ===
#chat_template: jinja
#chat_template_jinja: "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}"
#special_tokens:
# eos_token: "<end_of_turn>"
shuffle_merged_datasets: true
datasets:
- path: ToastyPigeon/some-rp-extended
type: customgemma-regex
- path: allura-org/inkstructmix-v0.2.1a-system-reasoning-separated
type: customgemma-regex
data_files: inkstruct-system.json
split: train[:750]
- path: ToastyPigeon/unalign-v2
type: chat_template
field_messages: conversations
message_property_mappings:
role: from
content: value
- path: ToastyPigeon/unalign-v2 # yes, twice on purpose
type: chat_template
field_messages: conversations
message_property_mappings:
role: from
content: value
- path: ToastyPigeon/synth-rp
split: train[:20%]
type: customgemma-regex
- path: PocketDoc/Floyd-Text-Adventures
data_files: floyd-pktdc.json
type: customgemma-regex
- path: ToastyPigeon/new-story-dataset
type: customcompletion-regex
field: text
dataset_prepared_path: last_run_prepared
# === Plugins ===
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
# === Hardware Optimization ===
gradient_checkpointing: true
#gradient_checkpointing_kwargs:
# use_reentrant: true
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
#liger_fused_linear_cross_entropy: true
#unsloth_cross_entropy_loss: true
cut_cross_entropy: true
# Only if using multiple GPUs:
#deepspeed: axolotl/deepspeed_configs/zero2.json
# === Wandb Tracking ===
wandb_project: Gemma
# wandb_entity: [WANDB_ENTITY]
# wandb_name: [WANDB_RUN_NAME]
# === Checkpointing ===
saves_per_epoch: 10
save_total_limit: 1
# === Advanced Settings ===
output_dir: ./ckpts
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
save_safetensors: true
logging_steps: 1
gc_steps: 10
seed: 69
g3-4b-it-creative-qlora
This model is a fine-tuned version of unsloth/gemma-3-4b-it on the ToastyPigeon/some-rp-extended, the allura-org/inkstructmix-v0.2.1a-system-reasoning-separated, the ToastyPigeon/unalign-v2, the ToastyPigeon/unalign-v2, the ToastyPigeon/synth-rp, the PocketDoc/Floyd-Text-Adventures and the ToastyPigeon/new-story-dataset datasets. It achieves the following results on the evaluation set:
- Loss: 2.7299
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 69
- gradient_accumulation_steps: 6
- total_train_batch_size: 18
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 8
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.5251 | 0.0034 | 1 | 4.6010 |
3.9623 | 0.1995 | 58 | 3.7722 |
2.8668 | 0.3991 | 116 | 3.2242 |
2.8385 | 0.5986 | 174 | 2.8821 |
2.7389 | 0.7982 | 232 | 2.7648 |
2.5117 | 0.9977 | 290 | 2.7299 |
Framework versions
- PEFT 0.15.0
- Transformers 4.51.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.