exaone_CSAT_test / README.md
Toastmachine's picture
Toastmachine/exaone_CSAT_test
af2fbdc verified
metadata
library_name: peft
license: other
base_model: LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: exaone_CSAT_test
    results: []

exaone_CSAT_test

This model is a fine-tuned version of LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4792
  • Accuracy: 0.5628
  • F1: 0.5965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 200
  • training_steps: 2100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
24.6602 0.1121 50 24.1094 0.5477 0.5761
12.8586 0.2242 100 6.5703 0.5729 0.6062
0.3657 0.3363 150 0.4956 0.5678 0.6005
0.5527 0.4484 200 0.4880 0.5678 0.6005
0.9587 0.5605 250 0.5098 0.5729 0.6054
0.9119 0.6726 300 0.4468 0.5678 0.6016
0.0989 0.7848 350 0.4690 0.5729 0.6066
0.6981 0.8969 400 0.4612 0.5628 0.5965
0.5197 1.0090 450 0.4792 0.5628 0.5965

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3