File size: 2,224 Bytes
af2fbdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: peft
license: other
base_model: LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: exaone_CSAT_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# exaone_CSAT_test
This model is a fine-tuned version of [LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4792
- Accuracy: 0.5628
- F1: 0.5965
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- training_steps: 2100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| 24.6602 | 0.1121 | 50 | 24.1094 | 0.5477 | 0.5761 |
| 12.8586 | 0.2242 | 100 | 6.5703 | 0.5729 | 0.6062 |
| 0.3657 | 0.3363 | 150 | 0.4956 | 0.5678 | 0.6005 |
| 0.5527 | 0.4484 | 200 | 0.4880 | 0.5678 | 0.6005 |
| 0.9587 | 0.5605 | 250 | 0.5098 | 0.5729 | 0.6054 |
| 0.9119 | 0.6726 | 300 | 0.4468 | 0.5678 | 0.6016 |
| 0.0989 | 0.7848 | 350 | 0.4690 | 0.5729 | 0.6066 |
| 0.6981 | 0.8969 | 400 | 0.4612 | 0.5628 | 0.5965 |
| 0.5197 | 1.0090 | 450 | 0.4792 | 0.5628 | 0.5965 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |