Uploaded model
- Developed by: Til-Qazyna
- License: apache-2.0
- Finetuned from model : Meta-Llama-3-8B
This model underwent Continuous Pretraining (CPT) on an extensive Kazakh text corpus to optimize LLAMA3 for the Kazakh language. It was subsequently fine-tuned with Kazakh-language instructional data. The model demonstrates strong performance in processing Kazakh text, answering text-based questions, correcting punctuation and grammar, and summarizing text. However, there is still room for improvement in handling open-ended questions.
Requirements
To install the necessary dependencies, use the following commands:
!pip install --no-deps "xformers<0.0.27" "trl<0.9.0"
!pip install peft accelerate bitsandbytes triton
Loading in 8bit with transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "TilQazyna/llama-kaz-instruct-8B-1"
hf_token = "<ENTER YOUR TOKEN>"
# enable load_in_4bit=True for faster results but slighlty lower accuracy
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True, use_auth_token=hf_token)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
Running simple inference
from transformers import TextStreamer
inputs = tokenizer("Тапсырма: Келесі мәтіндегі пунктуацияларды және грамматикалық қателерді дұрыста. \n\nМәтін: Жаналыктар леби осиндай \n\nЖауабы:", return_tensors="pt")
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
- Downloads last month
- 31
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for TilQazyna/llama-kaz-instruct-8B-1
Base model
meta-llama/Meta-Llama-3-8B