TieIncred's picture
update model card README.md
4e6667f
---
license: apache-2.0
base_model: DanGalt/distilhubert-finetuned-gtzan
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.88
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan-finetuned-gtzan
This model is a fine-tuned version of [DanGalt/distilhubert-finetuned-gtzan](https://huggingface.co/DanGalt/distilhubert-finetuned-gtzan) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8141
- Accuracy: 0.88
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1386 | 1.0 | 113 | 0.4885 | 0.89 |
| 0.1886 | 2.0 | 226 | 0.8306 | 0.82 |
| 0.0249 | 3.0 | 339 | 0.5499 | 0.89 |
| 0.0064 | 4.0 | 452 | 0.6929 | 0.87 |
| 0.0035 | 5.0 | 565 | 0.8061 | 0.85 |
| 0.0026 | 6.0 | 678 | 0.6237 | 0.89 |
| 0.0019 | 7.0 | 791 | 0.7316 | 0.88 |
| 0.0016 | 8.0 | 904 | 0.6724 | 0.91 |
| 0.0014 | 9.0 | 1017 | 0.7843 | 0.88 |
| 0.0012 | 10.0 | 1130 | 0.8141 | 0.88 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3