|
--- |
|
license: apache-2.0 |
|
base_model: t5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-base-standardized-color |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-base-standardized-color |
|
|
|
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2702 |
|
- Rouge1: 58.8296 |
|
- Rouge2: 50.9332 |
|
- Rougel: 58.2604 |
|
- Rougelsum: 58.323 |
|
- Gen Len: 16.2521 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 236 | 0.3490 | 49.2479 | 40.2468 | 48.6246 | 48.5062 | 18.0148 | |
|
| No log | 2.0 | 472 | 0.3080 | 52.8701 | 44.4405 | 52.3371 | 52.2684 | 17.1589 | |
|
| 0.3775 | 3.0 | 708 | 0.2871 | 55.4404 | 46.9716 | 54.9257 | 54.8833 | 16.9004 | |
|
| 0.3775 | 4.0 | 944 | 0.2792 | 61.4338 | 53.5456 | 60.9375 | 61.0613 | 15.0636 | |
|
| 0.2834 | 5.0 | 1180 | 0.2789 | 56.7293 | 48.3876 | 56.1734 | 56.2194 | 16.6589 | |
|
| 0.2834 | 6.0 | 1416 | 0.2742 | 53.2995 | 44.7666 | 52.7346 | 52.7591 | 17.3644 | |
|
| 0.2553 | 7.0 | 1652 | 0.2757 | 57.3854 | 49.1456 | 56.6424 | 56.7503 | 16.5318 | |
|
| 0.2553 | 8.0 | 1888 | 0.2717 | 56.9399 | 48.9799 | 56.405 | 56.4246 | 16.7055 | |
|
| 0.2393 | 9.0 | 2124 | 0.2703 | 58.4279 | 50.4598 | 57.8832 | 57.9165 | 16.3856 | |
|
| 0.2393 | 10.0 | 2360 | 0.2702 | 58.8296 | 50.9332 | 58.2604 | 58.323 | 16.2521 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |
|
|