File size: 1,473 Bytes
f39a67d f934b21 3057e3f f39a67d a9382b8 f39a67d a626212 f39a67d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
tags:
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
---
# ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4
This is a pre-trained model of a PPO agent playing SpaceInvadersNoFrameskip using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library. It is taken from [RL-trained-agents](https://github.com/DLR-RM/rl-trained-agents)
<video src="https://huggingface.co/ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4/resolve/main/output.mp4" controls autoplay loop></video>
### Usage (with Stable-baselines3)
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:
```
pip install stable-baselines3
pip install huggingface_sb3
```
Then, you can use the model like this:
```python
import gym
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.env_util import make_atari_env
from stable_baselines3.common.vec_env import VecFrameStack
# Retrieve the model from the hub
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
## filename = name of the model zip file from the repository
checkpoint = load_from_hub(repo_id="ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4", filename="ppo-SpaceInvadersNoFrameskip-v4.zip")
model = PPO.load(checkpoint)
```
### Evaluation Results
Mean_reward: 627.160 (162 eval episodes)
|