Commit
·
f39a67d
1
Parent(s):
979ffb7
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- deep-reinforcement-learning
|
4 |
+
- reinforcement-learning
|
5 |
+
- stable-baselines3
|
6 |
+
---
|
7 |
+
# ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4
|
8 |
+
|
9 |
+
<video src="https://huggingface.co/ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4/blob/main/output.mp4" controls autoplay loop/>
|
10 |
+
|
11 |
+
This is a pre-trained model of a PPO agent playing SpaceInvadersNoFrameskip using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library. It is taken from [RL-trained-agents](https://github.com/DLR-RM/rl-trained-agents)
|
12 |
+
|
13 |
+
### Usage (with Stable-baselines3)
|
14 |
+
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:
|
15 |
+
|
16 |
+
```
|
17 |
+
pip install stable-baselines3
|
18 |
+
pip install huggingface_sb3
|
19 |
+
```
|
20 |
+
|
21 |
+
Then, you can use the model like this:
|
22 |
+
|
23 |
+
```python
|
24 |
+
import gym
|
25 |
+
|
26 |
+
from huggingface_sb3 import load_from_hub
|
27 |
+
from stable_baselines3 import PPO
|
28 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
29 |
+
from stable_baselines3.common.env_util import make_atari_env
|
30 |
+
from stable_baselines3.common.vec_env import VecFrameStack
|
31 |
+
|
32 |
+
# Retrieve the model from the hub
|
33 |
+
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
|
34 |
+
## filename = name of the model zip file from the repository
|
35 |
+
checkpoint = load_from_hub(repo_id="ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4", filename="SpaceInvadersNoFrameskip-v4")
|
36 |
+
print(checkpoint)
|
37 |
+
model = PPO.load(checkpoint)
|
38 |
+
```
|
39 |
+
|
40 |
+
### Evaluation Results
|
41 |
+
Mean_reward: {your_evaluation_results}
|
42 |
+
|