|
from torch.nn import ( |
|
Module, |
|
Embedding, |
|
Dropout, |
|
ModuleDict, |
|
LayerNorm, |
|
ModuleList, |
|
Linear, |
|
GELU, |
|
functional, |
|
) |
|
from torch.nn.init import normal_, zeros_ |
|
from dataclasses import dataclass |
|
from rotary_embedding_torch import RotaryEmbedding |
|
from torch import ones, cat |
|
from torch.nn.functional import scaled_dot_product_attention |
|
import torch.nn.functional as F |
|
from math import sqrt |
|
|
|
@dataclass |
|
class NBAConfig: |
|
players_per_team: int = None |
|
player_tokens: int = None |
|
age_tokens: int = None |
|
n_layer: int = None |
|
n_head: int = None |
|
n_embd: int = None |
|
dropout: float = None |
|
seed: int = None |
|
bias: bool = None |
|
dtype: type = None |
|
num_labels: int = None |
|
|
|
class SelfAttention(Module): |
|
|
|
def __init__(self, config): |
|
|
|
block_size = config.players_per_team * 2 + 1 |
|
|
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
self.c_attn = Linear(config.n_embd, 3 * config.n_embd, bias=config.bias, dtype=config.dtype) |
|
self.c_proj = Linear(config.n_embd, config.n_embd, bias=config.bias, dtype=config.dtype) |
|
self.attn_dropout = Dropout(config.dropout) |
|
self.resid_dropout = Dropout(config.dropout) |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.dropout = config.dropout |
|
self.rotary_emb = RotaryEmbedding(config.n_embd) |
|
self.flash = hasattr(functional, 'scaled_dot_product_attention') |
|
if not self.flash: |
|
self.register_buffer("bias", ones(block_size, block_size) |
|
).view(1, 1, block_size, block_size) |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
|
|
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) |
|
|
|
q = self.rotary_emb.rotate_queries_or_keys(q) |
|
k = self.rotary_emb.rotate_queries_or_keys(k) |
|
|
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
|
|
if self.flash: |
|
y = scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=False) |
|
else: |
|
att = (q @ k.transpose(-2, -1)) * (1.0 / sqrt(k.size(-1))) |
|
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) |
|
att = F.softmax(att, dim=-1) |
|
att = self.attn_dropout(att) |
|
y = att @ v |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
|
|
y = self.resid_dropout(self.c_proj(y)) |
|
return y |
|
|
|
class MLP(Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = Linear(config.n_embd, 4 * config.n_embd, bias=config.bias, dtype=config.dtype) |
|
self.gelu = GELU() |
|
self.c_proj = Linear(4 * config.n_embd, config.n_embd, bias=config.bias, dtype=config.dtype) |
|
self.dropout = Dropout(config.dropout) |
|
|
|
def forward(self, x): |
|
x = self.c_fc(x) |
|
x = self.gelu(x) |
|
x = self.c_proj(x) |
|
x = self.dropout(x) |
|
return x |
|
|
|
class Block(Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias, dtype=config.dtype) |
|
self.attn = SelfAttention(config) |
|
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias, dtype=config.dtype) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
return x + self.mlp(self.ln_2(x)) |
|
|
|
class NBAModel(Module): |
|
|
|
def __init__(self, config) -> None: |
|
super().__init__() |
|
|
|
self.config = config |
|
|
|
self.transformer = ModuleDict(dict( |
|
home_player_embeddings = Embedding(config.player_tokens, config.n_embd, dtype=config.dtype), |
|
away_player_embeddings = Embedding(config.player_tokens, config.n_embd, dtype=config.dtype), |
|
home_age_embeddings = Embedding(config.age_tokens, config.n_embd, dtype=config.dtype), |
|
away_age_embeddings = Embedding(config.age_tokens, config.n_embd, dtype=config.dtype), |
|
drop = Dropout(config.dropout), |
|
h = ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
ln_f = LayerNorm(config.n_embd, bias=config.bias, dtype=config.dtype), |
|
)) |
|
|
|
self.head = Linear(config.n_embd, config.num_labels, dtype=config.dtype) |
|
|
|
self.apply(self._init_weights) |
|
for pn, p in self.named_parameters(): |
|
if pn.endswith('c_proj.weight'): |
|
normal_(p, mean=0.0, std=0.02/sqrt(2 * config.n_layer)) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, Linear): |
|
normal_(module.weight, mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
zeros_(module.bias) |
|
elif isinstance(module, Embedding): |
|
normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, **batch): |
|
home_player_tokens = batch['home_player_tokens'] |
|
away_player_tokens = batch['away_player_tokens'] |
|
home_age_tokens = batch['home_age_tokens'] |
|
away_age_tokens = batch['away_age_tokens'] |
|
|
|
home_player_embeddings = self.transformer.home_player_embeddings(home_player_tokens) |
|
away_player_embeddings = self.transformer.away_player_embeddings(away_player_tokens) |
|
|
|
home_age_embeddings = self.transformer.home_age_embeddings(home_age_tokens) |
|
away_age_embeddings = self.transformer.away_age_embeddings(away_age_tokens) |
|
|
|
home_emb = home_player_embeddings + home_age_embeddings |
|
away_emb = away_player_embeddings + away_age_embeddings |
|
|
|
x = cat([home_emb, away_emb], dim=1) |
|
|
|
x = self.transformer.drop(x) |
|
|
|
for block in self.transformer.h: |
|
x = block(x) |
|
x = self.transformer.ln_f(x) |
|
|
|
logits = self.head(x) |
|
logits = logits[:, 0] |
|
|
|
loss = None |
|
if 'home_team_won' in batch: |
|
loss = F.cross_entropy(logits, batch['home_net_score_token']) |
|
loss = {'loss': loss} |
|
|
|
return logits, loss |