File size: 6,143 Bytes
5f26252 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
from torch.nn import (
Module,
Embedding,
Dropout,
ModuleDict,
LayerNorm,
ModuleList,
Linear,
GELU,
functional,
)
from torch.nn.init import normal_, zeros_
from dataclasses import dataclass
from rotary_embedding_torch import RotaryEmbedding
from torch import ones, cat
from torch.nn.functional import scaled_dot_product_attention
import torch.nn.functional as F
from math import sqrt
@dataclass
class NBAConfig:
players_per_team: int = None
player_tokens: int = None
age_tokens: int = None
n_layer: int = None
n_head: int = None
n_embd: int = None
dropout: float = None
seed: int = None
bias: bool = None
dtype: type = None
num_labels: int = None
class SelfAttention(Module):
def __init__(self, config):
block_size = config.players_per_team * 2 + 1
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = Linear(config.n_embd, 3 * config.n_embd, bias=config.bias, dtype=config.dtype)
self.c_proj = Linear(config.n_embd, config.n_embd, bias=config.bias, dtype=config.dtype)
self.attn_dropout = Dropout(config.dropout)
self.resid_dropout = Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
self.rotary_emb = RotaryEmbedding(config.n_embd)
self.flash = hasattr(functional, 'scaled_dot_product_attention')
if not self.flash:
self.register_buffer("bias", ones(block_size, block_size)
).view(1, 1, block_size, block_size)
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
q = self.rotary_emb.rotate_queries_or_keys(q)
k = self.rotary_emb.rotate_queries_or_keys(k)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
if self.flash:
y = scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=False)
else:
att = (q @ k.transpose(-2, -1)) * (1.0 / sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
# output projection
y = self.resid_dropout(self.c_proj(y))
return y
class MLP(Module):
def __init__(self, config):
super().__init__()
self.c_fc = Linear(config.n_embd, 4 * config.n_embd, bias=config.bias, dtype=config.dtype)
self.gelu = GELU()
self.c_proj = Linear(4 * config.n_embd, config.n_embd, bias=config.bias, dtype=config.dtype)
self.dropout = Dropout(config.dropout)
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class Block(Module):
def __init__(self, config):
super().__init__()
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias, dtype=config.dtype)
self.attn = SelfAttention(config)
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias, dtype=config.dtype)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
return x + self.mlp(self.ln_2(x))
class NBAModel(Module):
def __init__(self, config) -> None:
super().__init__()
self.config = config
self.transformer = ModuleDict(dict(
home_player_embeddings = Embedding(config.player_tokens, config.n_embd, dtype=config.dtype),
away_player_embeddings = Embedding(config.player_tokens, config.n_embd, dtype=config.dtype),
home_age_embeddings = Embedding(config.age_tokens, config.n_embd, dtype=config.dtype),
away_age_embeddings = Embedding(config.age_tokens, config.n_embd, dtype=config.dtype),
drop = Dropout(config.dropout),
h = ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = LayerNorm(config.n_embd, bias=config.bias, dtype=config.dtype),
))
self.head = Linear(config.n_embd, config.num_labels, dtype=config.dtype)
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
normal_(p, mean=0.0, std=0.02/sqrt(2 * config.n_layer))
def _init_weights(self, module):
if isinstance(module, Linear):
normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
zeros_(module.bias)
elif isinstance(module, Embedding):
normal_(module.weight, mean=0.0, std=0.02)
def forward(self, **batch):
home_player_tokens = batch['home_player_tokens']
away_player_tokens = batch['away_player_tokens']
home_age_tokens = batch['home_age_tokens']
away_age_tokens = batch['away_age_tokens']
home_player_embeddings = self.transformer.home_player_embeddings(home_player_tokens)
away_player_embeddings = self.transformer.away_player_embeddings(away_player_tokens)
home_age_embeddings = self.transformer.home_age_embeddings(home_age_tokens)
away_age_embeddings = self.transformer.away_age_embeddings(away_age_tokens)
home_emb = home_player_embeddings + home_age_embeddings
away_emb = away_player_embeddings + away_age_embeddings
x = cat([home_emb, away_emb], dim=1)
x = self.transformer.drop(x)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.head(x)
logits = logits[:, 0]
loss = None
if 'home_team_won' in batch:
loss = F.cross_entropy(logits, batch['home_net_score_token'])
loss = {'loss': loss}
return logits, loss |