metadata
base_model: teknium/OpenHermes-2.5-Mistral-7B
datasets:
- teknium/OpenHermes-2.5
language:
- en
license: apache-2.0
tags:
- mistral
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
- mlx
model-index:
- name: OpenHermes-2-Mistral-7B
results: []
TheBlueObserver/OpenHermes-2.5-Mistral-7B-MLX-104ce
The Model TheBlueObserver/OpenHermes-2.5-Mistral-7B-MLX-104ce was converted to MLX format from teknium/OpenHermes-2.5-Mistral-7B using mlx-lm version 0.20.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("TheBlueObserver/OpenHermes-2.5-Mistral-7B-MLX-104ce")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)