Initial fp16 model commit
Browse files- README.md +16 -15
- added_tokens.json +3 -0
- config.json +23 -0
- generation_config.json +7 -0
- pytorch_model-00001-of-00003.bin +3 -0
- pytorch_model-00002-of-00003.bin +3 -0
- pytorch_model-00003-of-00003.bin +3 -0
- pytorch_model.bin.index.json +410 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +34 -0
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
license: other
|
3 |
---
|
4 |
|
@@ -28,7 +29,7 @@ Join me at: https://discord.gg/UBgz4VXf
|
|
28 |
|
29 |
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GPTQ)
|
30 |
* [4-bit, 5-bit and 8-bit GGML models for CPU(+GPU) inference](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGML)
|
31 |
-
* [Merged, unquantised fp16 model in HF format](https://huggingface.co/TheBloke/
|
32 |
|
33 |
|
34 |
## Want to support my work?
|
@@ -39,14 +40,14 @@ So if you're able and willing to contribute, it'd be most gratefully received an
|
|
39 |
|
40 |
* Patreon: coming soon! (just awaiting approval)
|
41 |
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
42 |
-
|
43 |
-
# Original model card
|
44 |
|
45 |
## WizardLM: An Instruction-following LLM Using Evol-Instruct
|
46 |
Empowering Large Pre-Trained Language Models to Follow Complex Instructions
|
47 |
|
48 |
<p align="center" width="100%">
|
49 |
-
<a ><img src="
|
50 |
</p>
|
51 |
|
52 |
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
|
@@ -69,9 +70,9 @@ At present, our core contributors are preparing the **33B** version and we expec
|
|
69 |
|
70 |
### GPT-4 automatic evaluation
|
71 |
|
72 |
-
We adopt the automatic evaluation framework based on GPT-4 proposed by FastChat to assess the performance of chatbot models. As shown in the following figure, WizardLM-13B achieved better results than Vicuna-13b.
|
73 |
<p align="center" width="100%">
|
74 |
-
<a ><img src="
|
75 |
</p>
|
76 |
|
77 |
### WizardLM-13B performance on different skills.
|
@@ -79,7 +80,7 @@ We adopt the automatic evaluation framework based on GPT-4 proposed by FastChat
|
|
79 |
The following figure compares WizardLM-13B and ChatGPT’s skill on Evol-Instruct testset. The result indicates that WizardLM-13B achieves 89.1% of ChatGPT’s performance on average, with almost 100% (or more than) capacity on 10 skills, and more than 90% capacity on 22 skills.
|
80 |
|
81 |
<p align="center" width="100%">
|
82 |
-
<a ><img src="
|
83 |
</p>
|
84 |
|
85 |
## Call for Feedbacks
|
@@ -98,11 +99,11 @@ We just sample some cases to demonstrate the performance of WizardLM and ChatGPT
|
|
98 |
[Evol-Instruct](https://github.com/nlpxucan/evol-instruct) is a novel method using LLMs instead of humans to automatically mass-produce open-domain instructions of various difficulty levels and skills range, to improve the performance of LLMs.
|
99 |
|
100 |
<p align="center" width="100%">
|
101 |
-
<a ><img src="
|
102 |
</p>
|
103 |
|
104 |
<p align="center" width="100%">
|
105 |
-
<a ><img src="
|
106 |
</p>
|
107 |
|
108 |
## Contents
|
@@ -150,7 +151,7 @@ This JSON file is a list of dictionaries, each dictionary contains the following
|
|
150 |
We release [WizardLM] weights as delta weights to comply with the LLaMA model license.
|
151 |
You can add our delta to the original LLaMA weights to obtain the WizardLM weights. Instructions:
|
152 |
1. Get the original LLaMA weights in the huggingface format by following the instructions [here](https://huggingface.co/docs/transformers/main/model_doc/llama).
|
153 |
-
2. Please download our delta model at the following [link](https://huggingface.co/victor123/WizardLM)
|
154 |
3. Use the following scripts to get WizardLM weights by applying our delta:
|
155 |
```
|
156 |
python src/weight_diff_wizard.py recover --path_raw <path_to_step_1_dir> --path_diff <path_to_step_2_dir> --path_tuned <path_to_store_recovered_weights>
|
@@ -213,16 +214,16 @@ python src\inference_wizardlm.py
|
|
213 |
|
214 |
### Evaluation
|
215 |
|
216 |
-
To evaluate Wizard, we conduct human evaluation on the inputs from our human instruct evaluation set [`WizardLM_testset.jsonl`](./data/WizardLM_testset.jsonl) . This evaluation set was collected by the authors and covers a diverse list of user-oriented instructions including difficult Coding Generation & Debugging, Math, Reasoning, Complex Formats, Academic Writing, Extensive Disciplines, and so on. We performed a blind pairwise comparison between Wizard and baselines. Specifically, we recruit 10 well-educated annotators to rank the models from 1 to 5 on relevance, knowledgeable, reasoning, calculation and accuracy.
|
217 |
|
218 |
-
WizardLM achieved significantly better results than Alpaca and Vicuna-7b.
|
219 |
<p align="center" width="60%">
|
220 |
-
<a ><img src="
|
221 |
</p>
|
222 |
|
223 |
In the high-difficulty section of our test set (difficulty level >= 8), WizardLM even outperforms ChatGPT, with a win rate 7.9% larger than Chatgpt (42.9% vs. 35.0%). This indicates that our method can significantly improve the ability of large language models to handle complex instructions.
|
224 |
<p align="center" width="60%">
|
225 |
-
<a ><img src="
|
226 |
</p>
|
227 |
|
228 |
### Citation
|
@@ -231,7 +232,7 @@ Please cite the repo if you use the data or code in this repo.
|
|
231 |
|
232 |
```
|
233 |
@misc{xu2023wizardlm,
|
234 |
-
title={WizardLM: Empowering Large Language Models to Follow Complex Instructions},
|
235 |
author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
|
236 |
year={2023},
|
237 |
eprint={2304.12244},
|
|
|
1 |
---
|
2 |
+
inference: false
|
3 |
license: other
|
4 |
---
|
5 |
|
|
|
29 |
|
30 |
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GPTQ)
|
31 |
* [4-bit, 5-bit and 8-bit GGML models for CPU(+GPU) inference](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGML)
|
32 |
+
* [Merged, unquantised fp16 model in HF format](https://huggingface.co/TheBloke/WizardLM-13B-1.0-HF)
|
33 |
|
34 |
|
35 |
## Want to support my work?
|
|
|
40 |
|
41 |
* Patreon: coming soon! (just awaiting approval)
|
42 |
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
43 |
+
|
44 |
+
# Original model card
|
45 |
|
46 |
## WizardLM: An Instruction-following LLM Using Evol-Instruct
|
47 |
Empowering Large Pre-Trained Language Models to Follow Complex Instructions
|
48 |
|
49 |
<p align="center" width="100%">
|
50 |
+
<a ><img src="imgs/WizardLM.png" alt="WizardLM" style="width: 20%; min-width: 300px; display: block; margin: auto;"></a>
|
51 |
</p>
|
52 |
|
53 |
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
|
|
|
70 |
|
71 |
### GPT-4 automatic evaluation
|
72 |
|
73 |
+
We adopt the automatic evaluation framework based on GPT-4 proposed by FastChat to assess the performance of chatbot models. As shown in the following figure, WizardLM-13B achieved better results than Vicuna-13b.
|
74 |
<p align="center" width="100%">
|
75 |
+
<a ><img src="imgs/WizarLM13b-GPT4.png" alt="WizardLM" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
|
76 |
</p>
|
77 |
|
78 |
### WizardLM-13B performance on different skills.
|
|
|
80 |
The following figure compares WizardLM-13B and ChatGPT’s skill on Evol-Instruct testset. The result indicates that WizardLM-13B achieves 89.1% of ChatGPT’s performance on average, with almost 100% (or more than) capacity on 10 skills, and more than 90% capacity on 22 skills.
|
81 |
|
82 |
<p align="center" width="100%">
|
83 |
+
<a ><img src="imgs/evol-testset_skills-13b.png" alt="WizardLM" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
|
84 |
</p>
|
85 |
|
86 |
## Call for Feedbacks
|
|
|
99 |
[Evol-Instruct](https://github.com/nlpxucan/evol-instruct) is a novel method using LLMs instead of humans to automatically mass-produce open-domain instructions of various difficulty levels and skills range, to improve the performance of LLMs.
|
100 |
|
101 |
<p align="center" width="100%">
|
102 |
+
<a ><img src="imgs/git_overall.png" alt="WizardLM" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a>
|
103 |
</p>
|
104 |
|
105 |
<p align="center" width="100%">
|
106 |
+
<a ><img src="imgs/git_running.png" alt="WizardLM" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a>
|
107 |
</p>
|
108 |
|
109 |
## Contents
|
|
|
151 |
We release [WizardLM] weights as delta weights to comply with the LLaMA model license.
|
152 |
You can add our delta to the original LLaMA weights to obtain the WizardLM weights. Instructions:
|
153 |
1. Get the original LLaMA weights in the huggingface format by following the instructions [here](https://huggingface.co/docs/transformers/main/model_doc/llama).
|
154 |
+
2. Please download our delta model at the following [link](https://huggingface.co/victor123/WizardLM)
|
155 |
3. Use the following scripts to get WizardLM weights by applying our delta:
|
156 |
```
|
157 |
python src/weight_diff_wizard.py recover --path_raw <path_to_step_1_dir> --path_diff <path_to_step_2_dir> --path_tuned <path_to_store_recovered_weights>
|
|
|
214 |
|
215 |
### Evaluation
|
216 |
|
217 |
+
To evaluate Wizard, we conduct human evaluation on the inputs from our human instruct evaluation set [`WizardLM_testset.jsonl`](./data/WizardLM_testset.jsonl) . This evaluation set was collected by the authors and covers a diverse list of user-oriented instructions including difficult Coding Generation & Debugging, Math, Reasoning, Complex Formats, Academic Writing, Extensive Disciplines, and so on. We performed a blind pairwise comparison between Wizard and baselines. Specifically, we recruit 10 well-educated annotators to rank the models from 1 to 5 on relevance, knowledgeable, reasoning, calculation and accuracy.
|
218 |
|
219 |
+
WizardLM achieved significantly better results than Alpaca and Vicuna-7b.
|
220 |
<p align="center" width="60%">
|
221 |
+
<a ><img src="imgs/win.png" alt="WizardLM" style="width: 60%; min-width: 300px; display: block; margin: auto;"></a>
|
222 |
</p>
|
223 |
|
224 |
In the high-difficulty section of our test set (difficulty level >= 8), WizardLM even outperforms ChatGPT, with a win rate 7.9% larger than Chatgpt (42.9% vs. 35.0%). This indicates that our method can significantly improve the ability of large language models to handle complex instructions.
|
225 |
<p align="center" width="60%">
|
226 |
+
<a ><img src="imgs/windiff.png" alt="WizardLM" style="width: 60%; min-width: 300px; display: block; margin: auto;"></a>
|
227 |
</p>
|
228 |
|
229 |
### Citation
|
|
|
232 |
|
233 |
```
|
234 |
@misc{xu2023wizardlm,
|
235 |
+
title={WizardLM: Empowering Large Language Models to Follow Complex Instructions},
|
236 |
author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
|
237 |
year={2023},
|
238 |
eprint={2304.12244},
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[PAD]": 32000
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/workspace/process/wizardLM-13B-1.0/fp32",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 5120,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 13824,
|
12 |
+
"max_position_embeddings": 2048,
|
13 |
+
"model_type": "llama",
|
14 |
+
"num_attention_heads": 40,
|
15 |
+
"num_hidden_layers": 40,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"rms_norm_eps": 1e-06,
|
18 |
+
"tie_word_embeddings": false,
|
19 |
+
"torch_dtype": "float16",
|
20 |
+
"transformers_version": "4.29.2",
|
21 |
+
"use_cache": true,
|
22 |
+
"vocab_size": 32001
|
23 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.29.2"
|
7 |
+
}
|
pytorch_model-00001-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc950f84943ff41c8630ac4037e7bf8ad4a87f9a4831e5ab0ec735e78db4619
|
3 |
+
size 9948736750
|
pytorch_model-00002-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c7adbe0e681f453a39fc9171e324e8de08bdba5f38702bf054d12ad3d23137d
|
3 |
+
size 9904162976
|
pytorch_model-00003-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ce90e5369cc6104eecdb7a86f25e2331d86c769eea0a20c81d05947eeced558
|
3 |
+
size 6178992713
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 26031754240
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
268 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
269 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
270 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
271 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
272 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
273 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
274 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
275 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
276 |
+
"model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
277 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
278 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
279 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
280 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
281 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
282 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
283 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
284 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
285 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
286 |
+
"model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
287 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
288 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
289 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
290 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
291 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
292 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
293 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
294 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
295 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
296 |
+
"model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
297 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
298 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
299 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
300 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
301 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
302 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
303 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
304 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
305 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
306 |
+
"model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
307 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
308 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
309 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
310 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
311 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
312 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
313 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
314 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
315 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
316 |
+
"model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
317 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
318 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
319 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
320 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
321 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
322 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
323 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
324 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
325 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
326 |
+
"model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
327 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
328 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
329 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
330 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
331 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
332 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
333 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
334 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
335 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
336 |
+
"model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
337 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
338 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
339 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
340 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
341 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
342 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
343 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
344 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
345 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
346 |
+
"model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
347 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
348 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
349 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
350 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
351 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
352 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
353 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
354 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
355 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
356 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
357 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
358 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
359 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
360 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
361 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
362 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
363 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
364 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
365 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
366 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
367 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
368 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
369 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
370 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
371 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
372 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
373 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
374 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
375 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
376 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
377 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
378 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
379 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
380 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
381 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
382 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
383 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
384 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
385 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
386 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
387 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
388 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
389 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
390 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
391 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
392 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
393 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
394 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
395 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
396 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
397 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
398 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
399 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
400 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
401 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
402 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
403 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
404 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
405 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
406 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
407 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
408 |
+
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
409 |
+
}
|
410 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "[PAD]",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"model_max_length": 2048,
|
22 |
+
"pad_token": null,
|
23 |
+
"padding_side": "right",
|
24 |
+
"sp_model_kwargs": {},
|
25 |
+
"tokenizer_class": "LlamaTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|