TheBloke commited on
Commit
4b66b94
1 Parent(s): 5e5b899

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -40,13 +40,13 @@ So if you're able and willing to contribute, it'd be most gratefully received an
40
  * Patreon: coming soon! (just awaiting approval)
41
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
42
 
43
- # Original model card
44
 
45
  ## WizardLM: An Instruction-following LLM Using Evol-Instruct
46
  Empowering Large Pre-Trained Language Models to Follow Complex Instructions
47
 
48
  <p align="center" width="100%">
49
- <a ><img src="imgs/WizardLM.png" alt="WizardLM" style="width: 20%; min-width: 300px; display: block; margin: auto;"></a>
50
  </p>
51
 
52
  [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
@@ -71,7 +71,7 @@ At present, our core contributors are preparing the **33B** version and we expec
71
 
72
  We adopt the automatic evaluation framework based on GPT-4 proposed by FastChat to assess the performance of chatbot models. As shown in the following figure, WizardLM-13B achieved better results than Vicuna-13b.
73
  <p align="center" width="100%">
74
- <a ><img src="imgs/WizarLM13b-GPT4.png" alt="WizardLM" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
75
  </p>
76
 
77
  ### WizardLM-13B performance on different skills.
@@ -79,7 +79,7 @@ We adopt the automatic evaluation framework based on GPT-4 proposed by FastChat
79
  The following figure compares WizardLM-13B and ChatGPT’s skill on Evol-Instruct testset. The result indicates that WizardLM-13B achieves 89.1% of ChatGPT’s performance on average, with almost 100% (or more than) capacity on 10 skills, and more than 90% capacity on 22 skills.
80
 
81
  <p align="center" width="100%">
82
- <a ><img src="imgs/evol-testset_skills-13b.png" alt="WizardLM" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
83
  </p>
84
 
85
  ## Call for Feedbacks
@@ -98,11 +98,11 @@ We just sample some cases to demonstrate the performance of WizardLM and ChatGPT
98
  [Evol-Instruct](https://github.com/nlpxucan/evol-instruct) is a novel method using LLMs instead of humans to automatically mass-produce open-domain instructions of various difficulty levels and skills range, to improve the performance of LLMs.
99
 
100
  <p align="center" width="100%">
101
- <a ><img src="imgs/git_overall.png" alt="WizardLM" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a>
102
  </p>
103
 
104
  <p align="center" width="100%">
105
- <a ><img src="imgs/git_running.png" alt="WizardLM" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a>
106
  </p>
107
 
108
  ## Contents
@@ -217,12 +217,12 @@ To evaluate Wizard, we conduct human evaluation on the inputs from our human ins
217
 
218
  WizardLM achieved significantly better results than Alpaca and Vicuna-7b.
219
  <p align="center" width="60%">
220
- <a ><img src="imgs/win.png" alt="WizardLM" style="width: 60%; min-width: 300px; display: block; margin: auto;"></a>
221
  </p>
222
 
223
  In the high-difficulty section of our test set (difficulty level >= 8), WizardLM even outperforms ChatGPT, with a win rate 7.9% larger than Chatgpt (42.9% vs. 35.0%). This indicates that our method can significantly improve the ability of large language models to handle complex instructions.
224
  <p align="center" width="60%">
225
- <a ><img src="imgs/windiff.png" alt="WizardLM" style="width: 60%; min-width: 300px; display: block; margin: auto;"></a>
226
  </p>
227
 
228
  ### Citation
@@ -241,4 +241,4 @@ Please cite the repo if you use the data or code in this repo.
241
  ```
242
  ## Disclaimer
243
 
244
- The resources, including code, data, and model weights, associated with this project are restricted for academic research purposes only and cannot be used for commercial purposes. The content produced by any version of WizardLM is influenced by uncontrollable variables such as randomness, and therefore, the accuracy of the output cannot be guaranteed by this project. This project does not accept any legal liability for the content of the model output, nor does it assume responsibility for any losses incurred due to the use of associated resources and output results.
 
40
  * Patreon: coming soon! (just awaiting approval)
41
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
42
 
43
+ # Original model card: WizardLM 13B 1.0
44
 
45
  ## WizardLM: An Instruction-following LLM Using Evol-Instruct
46
  Empowering Large Pre-Trained Language Models to Follow Complex Instructions
47
 
48
  <p align="center" width="100%">
49
+ <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/imgs/WizardLM.png" alt="WizardLM" style="width: 20%; min-width: 300px; display: block; margin: auto;"></a>
50
  </p>
51
 
52
  [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
 
71
 
72
  We adopt the automatic evaluation framework based on GPT-4 proposed by FastChat to assess the performance of chatbot models. As shown in the following figure, WizardLM-13B achieved better results than Vicuna-13b.
73
  <p align="center" width="100%">
74
+ <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/imgs/WizarLM13b-GPT4.png" alt="WizardLM" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
75
  </p>
76
 
77
  ### WizardLM-13B performance on different skills.
 
79
  The following figure compares WizardLM-13B and ChatGPT’s skill on Evol-Instruct testset. The result indicates that WizardLM-13B achieves 89.1% of ChatGPT’s performance on average, with almost 100% (or more than) capacity on 10 skills, and more than 90% capacity on 22 skills.
80
 
81
  <p align="center" width="100%">
82
+ <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/imgs/evol-testset_skills-13b.png" alt="WizardLM" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
83
  </p>
84
 
85
  ## Call for Feedbacks
 
98
  [Evol-Instruct](https://github.com/nlpxucan/evol-instruct) is a novel method using LLMs instead of humans to automatically mass-produce open-domain instructions of various difficulty levels and skills range, to improve the performance of LLMs.
99
 
100
  <p align="center" width="100%">
101
+ <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/imgs/git_overall.png" alt="WizardLM" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a>
102
  </p>
103
 
104
  <p align="center" width="100%">
105
+ <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/imgs/git_running.png" alt="WizardLM" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a>
106
  </p>
107
 
108
  ## Contents
 
217
 
218
  WizardLM achieved significantly better results than Alpaca and Vicuna-7b.
219
  <p align="center" width="60%">
220
+ <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/imgs/win.png" alt="WizardLM" style="width: 60%; min-width: 300px; display: block; margin: auto;"></a>
221
  </p>
222
 
223
  In the high-difficulty section of our test set (difficulty level >= 8), WizardLM even outperforms ChatGPT, with a win rate 7.9% larger than Chatgpt (42.9% vs. 35.0%). This indicates that our method can significantly improve the ability of large language models to handle complex instructions.
224
  <p align="center" width="60%">
225
+ <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/imgs/windiff.png" alt="WizardLM" style="width: 60%; min-width: 300px; display: block; margin: auto;"></a>
226
  </p>
227
 
228
  ### Citation
 
241
  ```
242
  ## Disclaimer
243
 
244
+ The resources, including code, data, and model weights, associated with this project are restricted for academic research purposes only and cannot be used for commercial purposes. The content produced by any version of WizardLM is influenced by uncontrollable variables such as randomness, and therefore, the accuracy of the output cannot be guaranteed by this project. This project does not accept any legal liability for the content of the model output, nor does it assume responsibility for any losses incurred due to the use of associated resources and output results.