TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Swallow 7B Instruct - GGUF

Description

This repo contains GGUF format model files for tokyotech-llm's Swallow 7B Instruct.

These files were quantised using hardware kindly provided by Massed Compute.

About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplete list of clients and libraries that are known to support GGUF:

  • llama.cpp. The source project for GGUF. Offers a CLI and a server option.
  • text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
  • KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
  • GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
  • LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
  • LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
  • Faraday.dev, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
  • llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
  • candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.
  • ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.

Repositories available

Prompt template: Swallow-Instruct

以下に、あるタスクを説明する指示があります。リクエストを適切に完了するための回答を記述してください。\n\n### 指示:\n{prompt}\n\n### 応答:

Compatibility

These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit d0cee0d

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

Explanation of quantisation methods

Click to see details

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
swallow-7b-instruct.Q2_K.gguf Q2_K 2 2.88 GB 5.38 GB smallest, significant quality loss - not recommended for most purposes
swallow-7b-instruct.Q3_K_S.gguf Q3_K_S 3 3.01 GB 5.51 GB very small, high quality loss
swallow-7b-instruct.Q3_K_M.gguf Q3_K_M 3 3.36 GB 5.86 GB very small, high quality loss
swallow-7b-instruct.Q3_K_L.gguf Q3_K_L 3 3.65 GB 6.15 GB small, substantial quality loss
swallow-7b-instruct.Q4_0.gguf Q4_0 4 3.89 GB 6.39 GB legacy; small, very high quality loss - prefer using Q3_K_M
swallow-7b-instruct.Q4_K_S.gguf Q4_K_S 4 3.92 GB 6.42 GB small, greater quality loss
swallow-7b-instruct.Q4_K_M.gguf Q4_K_M 4 4.14 GB 6.64 GB medium, balanced quality - recommended
swallow-7b-instruct.Q5_0.gguf Q5_0 5 4.72 GB 7.22 GB legacy; medium, balanced quality - prefer using Q4_K_M
swallow-7b-instruct.Q5_K_S.gguf Q5_K_S 5 4.72 GB 7.22 GB large, low quality loss - recommended
swallow-7b-instruct.Q5_K_M.gguf Q5_K_M 5 4.85 GB 7.35 GB large, very low quality loss - recommended
swallow-7b-instruct.Q6_K.gguf Q6_K 6 5.60 GB 8.10 GB very large, extremely low quality loss
swallow-7b-instruct.Q8_0.gguf Q8_0 8 7.26 GB 9.76 GB very large, extremely low quality loss - not recommended

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to download GGUF files

Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:

  • LM Studio
  • LoLLMS Web UI
  • Faraday.dev

In text-generation-webui

Under Download Model, you can enter the model repo: TheBloke/Swallow-7B-Instruct-GGUF and below it, a specific filename to download, such as: swallow-7b-instruct.Q4_K_M.gguf.

Then click Download.

On the command line, including multiple files at once

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

Then you can download any individual model file to the current directory, at high speed, with a command like this:

huggingface-cli download TheBloke/Swallow-7B-Instruct-GGUF swallow-7b-instruct.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
More advanced huggingface-cli download usage (click to read)

You can also download multiple files at once with a pattern:

huggingface-cli download TheBloke/Swallow-7B-Instruct-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Swallow-7B-Instruct-GGUF swallow-7b-instruct.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1 before the download command.

Example llama.cpp command

Make sure you are using llama.cpp from commit d0cee0d or later.

./main -ngl 35 -m swallow-7b-instruct.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "以下に、あるタスクを説明する指示があります。リクエストを適切に完了するための回答を記述してください。\n\n### 指示:\n{prompt}\n\n### 応答:"

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change -c 4096 to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions can be found in the text-generation-webui documentation, here: text-generation-webui/docs/04 ‐ Model Tab.md.

How to run from Python code

You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.

How to load this model in Python code, using llama-cpp-python

For full documentation, please see: llama-cpp-python docs.

First install the package

Run one of the following commands, according to your system:

# Base ctransformers with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python

# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
pip install llama-cpp-python

Simple llama-cpp-python example code

from llama_cpp import Llama

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
  model_path="./swallow-7b-instruct.Q4_K_M.gguf",  # Download the model file first
  n_ctx=4096,  # The max sequence length to use - note that longer sequence lengths require much more resources
  n_threads=8,            # The number of CPU threads to use, tailor to your system and the resulting performance
  n_gpu_layers=35         # The number of layers to offload to GPU, if you have GPU acceleration available
)

# Simple inference example
output = llm(
  "以下に、あるタスクを説明する指示があります。リクエストを適切に完了するための回答を記述してください。\n\n### 指示:\n{prompt}\n\n### 応答:", # Prompt
  max_tokens=512,  # Generate up to 512 tokens
  stop=["</s>"],   # Example stop token - not necessarily correct for this specific model! Please check before using.
  echo=True        # Whether to echo the prompt
)

# Chat Completion API

llm = Llama(model_path="./swallow-7b-instruct.Q4_K_M.gguf", chat_format="llama-2")  # Set chat_format according to the model you are using
llm.create_chat_completion(
    messages = [
        {"role": "system", "content": "You are a story writing assistant."},
        {
            "role": "user",
            "content": "Write a story about llamas."
        }
    ]
)

How to use with LangChain

Here are guides on using llama-cpp-python and ctransformers with LangChain:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: tokyotech-llm's Swallow 7B Instruct

Swallow

Our Swallow model has undergone continuous pre-training from the Llama 2 family, primarily with the addition of Japanese language data. The tuned versions use supervised fine-tuning (SFT). Links to other models can be found in the index.

Swallow Model Index

Model Swallow-hf Swallow-instruct-hf
7B Link Link
13B Link Link
70B Link Link

logo

This repository provides large language models developed by TokyoTech-LLM. Read our blog post or our paper (preprint coming soon) for more details!

Model Details

  • Model type: Please refer to LLaMA-2 technical report for details on the model architecture.
  • Language(s): Japanese English
  • Library: Megatron-LM
  • Tokenizer: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
  • Contact: swallow[at]nlp.c.titech.ac.jp

Base Model Performance

Japanese version

Model Size JCommonsenseQA JEMHopQA NIILC JSQuAD XL-Sum MGSM WMT20-en-ja WMT20-ja-en
4-shot 4-shot 4-shot 4-shot 1-shot 4-shot 4-shot 4-shot
Llama 2 7B 0.3852 0.4240 0.3410 0.7917 0.1905 0.0760 0.1783 0.1738
Swallow 7B 0.4808 0.5078 0.5968 0.8573 0.1830 0.1240 0.2510 0.1511
Llama 2 13B 0.6997 0.4415 0.4170 0.8533 0.2139 0.1320 0.2146 0.1982
Swallow 13B 0.7837 0.5063 0.6398 0.9005 0.2168 0.2040 0.2720 0.1771
Llama 2 70B 0.8686 0.4656 0.5256 0.9080 0.2361 0.3560 0.2643 0.2398
Swallow 70B 0.9348 0.6290 0.6960 0.9176 0.2266 0.4840 0.3043 0.2298

Usage

First install additional dependencies in requirements.txt:

pip install -r requirements.txt

Use the instruct model

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "tokyotech-llm/Swallow-7b-instruct-hf"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto")


PROMPT_DICT = {
    "prompt_input": (
        "以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
        "リクエストを適切に完了するための回答を記述してください。\n\n"
        "### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"

    ),
    "prompt_no_input": (
        "以下に、あるタスクを説明する指示があります。"
        "リクエストを適切に完了するための回答を記述してください。\n\n"
        "### 指示:\n{instruction}\n\n### 応答:"
    ),
}

def create_prompt(instruction, input=None):
    """
    Generates a prompt based on the given instruction and an optional input.
    If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
    If no input is provided, it uses the 'prompt_no_input' template.

    Args:
        instruction (str): The instruction describing the task.
        input (str, optional): Additional input providing context for the task. Default is None.

    Returns:
        str: The generated prompt.
    """
    if input:
        # Use the 'prompt_input' template when additional input is provided
        return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
    else:
        # Use the 'prompt_no_input' template when no additional input is provided
        return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)

# Example usage
instruction_example = "以下のトピックに関する詳細な情報を提供してください。"
input_example = "東京工業大学の主なキャンパスについて教えてください"
prompt = create_prompt(instruction_example, input_example)

input_ids = tokenizer.encode(
    prompt,
    add_special_tokens=False,
    return_tensors="pt"
)

tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=128,
    temperature=0.99,
    top_p=0.95,
    do_sample=True,
)

out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)

Use the base model

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "tokyotech-llm/Swallow-7b-hf"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")

prompt = "東京工業大学の主なキャンパスは、"
input_ids = tokenizer.encode(
    prompt,
    add_special_tokens=False,
    return_tensors="pt"
)
tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=128,
    temperature=0.99,
    top_p=0.95,
    do_sample=True,
)

out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)

Training Datasets

Continual Pre-Training

The following datasets were used for continual pre-training.

Instruction Tuning

The following datasets were used for the instruction tuning.

Risks and Limitations

The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.

Acknowledgements

We thank Meta Research for releasing Llama 2 under an open license for others to build on.

Our project is supported by the ABCI Large-scale Language Model Building Support Program of the National Institute of Advanced Industrial Science and Technology.

License

Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.

Authors

Here are the team members:

Downloads last month
357
GGUF
Model size
6.83B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/Swallow-7B-Instruct-GGUF

Quantized
(8)
this model