TheBloke's picture
Update README.md
8165e62
|
raw
history blame
11.7 kB
---
inference: false
language:
- eng
license: other
model_type: llama
tags:
- llama-2
- sft
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# NousResearch's Redmond Puffin 13B GPTQ
These files are GPTQ model files for [NousResearch's Redmond Puffin 13B](https://huggingface.co/NousResearch/Redmond-Puffin-13B).
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
## Repositories available
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML)
* [Original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Redmond-Puffin-13B)
## Prompt template: Human-Gpt
```
### human:
### gpt:
```
## Provided files
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
| Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
| ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
| main | 4 | 128 | False | 7.26 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
| gptq-4bit-32g-actorder_True | 4 | 32 | True | 8.00 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
| gptq-4bit-64g-actorder_True | 4 | 64 | True | 7.51 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
| gptq-4bit-128g-actorder_True | 4 | 128 | True | 7.26 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
## How to download from branches
- In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Redmond-Puffin-13B-GPTQ:gptq-4bit-32g-actorder_True`
- With Git, you can clone a branch with:
```
git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ`
```
- In Python Transformers code, the branch is the `revision` parameter; see below.
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/Redmond-Puffin-13B-GPTQ`.
- To download from a specific branch, enter for example `TheBloke/Redmond-Puffin-13B-GPTQ:gptq-4bit-32g-actorder_True`
- see Provided Files above for the list of branches for each option.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done"
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `Redmond-Puffin-13B-GPTQ`
7. The model will automatically load, and is now ready for use!
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
* Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
## How to use this GPTQ model from Python code
First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
`GITHUB_ACTIONS=true pip install auto-gptq`
Then try the following example code:
```python
from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
model_name_or_path = "TheBloke/Redmond-Puffin-13B-GPTQ"
model_basename = "gptq_model-4bit-128g"
use_triton = False
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
model_basename=model_basename
use_safetensors=True,
trust_remote_code=False,
device="cuda:0",
use_triton=use_triton,
quantize_config=None)
"""
To download from a specific branch, use the revision parameter, as in this example:
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
revision="gptq-4bit-32g-actorder_True",
model_basename=model_basename,
use_safetensors=True,
trust_remote_code=False,
device="cuda:0",
quantize_config=None)
"""
prompt = "Tell me about AI"
prompt_template=f'''### human:
### gpt:
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15
)
print(pipe(prompt_template)[0]['generated_text'])
```
## Compatibility
The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
**Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: NousResearch's Redmond Puffin 13B
![puffin](https://i.imgur.com/R2xTHMb.png)
## **Redmond-Puffin-13b (Currently available as a Preview edition)**
**The first commercially available language model released by Nous Research!**
Redmond-Puffin-13B is one of the worlds first llama-2 based, fine-tuned language models, leveraging a hand curated set of 3K high quality examples, many of which take full advantage of the 4096 context length of Llama 2. This model was fine-tuned by Nous Research, with LDJ leading the training and dataset curation, along with significant dataset formation contributions by J-Supha.
Special thank you to Redmond AI for sponsoring the compute.
Special thank you to Emozilla for assisting with training experimentations and many issues encountered during training.
Notable mentions for assisting in some of the training issues goes to: Caseus and Teknium.
## Model Training
Redmond-Puffin-13B is a new model trained for multiple epochs on a dataset of 3,000 carefully curated GPT-4 examples, most of which are long context conversations between a real human and GPT-4.
Additional data came from carefully curated subsections of datasets such as CamelAI's Physics, Chemistry, Biology and Math.
## Prompt Format
The model follows the Vicuna ShareGPT prompt format:
```
### human:
### gpt:
```
## Notable Features:
- The first Llama-2 based fine-tuned model released by Nous Research.
- Ability to recall information from upto late 2022 without internet. (ChatGPT cut off date is in 2021)
- Pretrained on 2 trillion tokens of text. (This is double the amount of most Open LLM's)
- Pretrained with a context length of 4096 tokens, and fine-tuned on a significant amount of multi-turn conversations reaching that full token limit.
- The first commercially available language model released by Nous Research.
## Current Limitations
Some token mismatch problems and formatting issues have been idenitifed, these may very possibly effect the current output quality.
We plan to have these solved in an updated Puffin model in the very near future, please stay tuned!
## Future Plans
This is a relatively early build amongst the grand plans for the future of Puffin!
Current limitations: Some token mismatch problems and formatting issues have been idenitifed, these may very possibly effect the current output quality, we plan to have these solved in an updated Puffin model in the near future.
In the near future we plan on releasing an improved version of the model with the help of domain specific expert volunteers, which will help eliminate any wrong data from this curation and improve the further ones.
## Benchmarks coming soon
benchmarks coming soon!