inference: false
license: llama2
model-index:
- name: Phind-CodeLlama-34B-v1
results:
- dataset:
name: HumanEval
type: openai_humaneval
metrics:
- name: pass@1
type: pass@1
value: 69.5%
verified: false
task:
type: text-generation
model_creator: Phind
model_link: https://huggingface.co/Phind/Phind-CodeLlama-34B-Python-v1
model_name: Phind CodeLlama 34B Python v1
model_type: llama
quantized_by: TheBloke
tags:
- code llama
TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Phind CodeLlama 34B Python v1 - GGUF
- Model creator: Phind
- Original model: Phind CodeLlama 34B Python v1
Description
This repo contains GGUF format model files for Phind's Phind CodeLlama 34B Python v1.
About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
Here are a list of clients and libraries that are known to support GGUF:
- llama.cpp.
- text-generation-webui, the most widely used web UI. Supports GGUF with GPU acceleration via the ctransformers backend - llama-cpp-python backend should work soon too.
- KoboldCpp, now supports GGUF as of release 1.41! A powerful GGML web UI, with full GPU accel. Especially good for story telling.
- LM Studio, version 0.2.2 and later support GGUF. A fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
- LoLLMS Web UI, should now work, choose the
c_transformers
backend. A great web UI with many interesting features. Supports CUDA GPU acceleration. - ctransformers, now supports GGUF as of version 0.2.24! A Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
- llama-cpp-python, supports GGUF as of version 0.1.79. A Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
- candle, added GGUF support on August 22nd. Candle is a Rust ML framework with a focus on performance, including GPU support, and ease of use.
Repositories available
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- Phind's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: Plain-with-newline
{prompt} \n
Compatibility
These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit 6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9
They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.
Explanation of quantisation methods
Click to see details
The new methods available are:
- GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
- GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
- GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
- GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
- GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
Provided files
Name | Quant method | Bits | Size | Max RAM required | Use case |
---|---|---|---|---|---|
phind-codellama-34b-python-v1.Q2_K.gguf | Q2_K | 2 | 14.21 GB | 16.71 GB | smallest, significant quality loss - not recommended for most purposes |
phind-codellama-34b-python-v1.Q3_K_S.gguf | Q3_K_S | 3 | 14.61 GB | 17.11 GB | very small, high quality loss |
phind-codellama-34b-python-v1.Q3_K_M.gguf | Q3_K_M | 3 | 16.28 GB | 18.78 GB | very small, high quality loss |
phind-codellama-34b-python-v1.Q3_K_L.gguf | Q3_K_L | 3 | 17.77 GB | 20.27 GB | small, substantial quality loss |
phind-codellama-34b-python-v1.Q4_0.gguf | Q4_0 | 4 | 19.05 GB | 21.55 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
phind-codellama-34b-python-v1.Q4_K_S.gguf | Q4_K_S | 4 | 19.15 GB | 21.65 GB | small, greater quality loss |
phind-codellama-34b-python-v1.Q4_K_M.gguf | Q4_K_M | 4 | 20.22 GB | 22.72 GB | medium, balanced quality - recommended |
phind-codellama-34b-python-v1.Q5_0.gguf | Q5_0 | 5 | 23.24 GB | 25.74 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
phind-codellama-34b-python-v1.Q5_K_S.gguf | Q5_K_S | 5 | 23.24 GB | 25.74 GB | large, low quality loss - recommended |
phind-codellama-34b-python-v1.Q5_K_M.gguf | Q5_K_M | 5 | 23.84 GB | 26.34 GB | large, very low quality loss - recommended |
phind-codellama-34b-python-v1.Q6_K.gguf | Q6_K | 6 | 27.68 GB | 30.18 GB | very large, extremely low quality loss |
phind-codellama-34b-python-v1.Q8_0.gguf | Q8_0 | 8 | 35.86 GB | 38.36 GB | very large, extremely low quality loss - not recommended |
Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
Example llama.cpp
command
Make sure you are using llama.cpp
from commit 6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9 or later.
For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.
./main -t 10 -ngl 32 -m phind-codellama-34b-python-v1.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Write a story about llamas \n"
Change -t 10
to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use -t 8
. If offloading all layers to GPU, set -t 1
.
Change -ngl 32
to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change -c 4096
to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
If you want to have a chat-style conversation, replace the -p <PROMPT>
argument with -i -ins
For other parameters and how to use them, please refer to the llama.cpp documentation
How to run in text-generation-webui
Further instructions here: text-generation-webui/docs/llama.cpp.md.
How to run from Python code
You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries.
How to load this model from Python using ctransformers
First install the package
# Base ctransformers with no GPU acceleration
pip install ctransformers>=0.2.24
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]>=0.2.24
# Or with ROCm GPU acceleration
CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems
CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
Simple example code to load one of these GGUF models
from ctransformers import AutoModelForCausalLM
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Phind-CodeLlama-34B-Python-v1-GGUF", model_file="phind-codellama-34b-python-v1.q4_K_M.gguf", model_type="llama", gpu_layers=50)
print(llm("AI is going to"))
How to use with LangChain
Here's guides on using llama-cpp-python or ctransformers with LangChain:
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute.
Thanks to the chirper.ai team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: Phind's Phind CodeLlama 34B Python v1
Phind-CodeLlama-34B-Python-v1
We've fine-tuned CodeLlama-34B and CodeLlama-34B-Python on an internal Phind dataset that achieve 67.6% and 69.5% pass@1 on HumanEval, respectively. GPT-4 achieves 67%. We've applied OpenAI's decontamination methodology to our dataset to ensure result validity.
More details can be found on our blog post.
Model Details
This model is fine-tuned from CodeLlama-34B-Python and achieves 69.5% pass@1 on HumanEval.
Dataset Details
We fined-tuned on a proprietary dataset of ~80k high quality programming problems and solutions. This dataset consists of instruction-answer pairs instead of code completion examples, making it structurally different from HumanEval. The Phind models were trained for 2 epochs, for a total of ~160k examples shown. LoRA was not used -- both models are a native finetune. We used DeepSpeed ZeRO 3 and Flash Attention 2 to train these models in three hours on 32 A100-80GB GPUs. We used a sequence length of 4096 tokens.
How to Get Started with the Model
Make sure to install Transformers from the main git branch:
pip install git+https://github.com/huggingface/transformers.git
How to Prompt the Model
Please note that this model is somewhat instruction-tuned, but not chat-tuned.
Do not try to use the Llama chat markup with this model. Instead, simply tell it what you want and add "\n: " at the end of your task.
For example:
Write me a linked list implementation: \n
How to reproduce HumanEval Results
To reproduce our results:
from transformers import AutoTokenizer, LlamaForCausalLM
from human_eval.data import write_jsonl, read_problems
from tqdm import tqdm
# initialize the model
model_path = "Phind/Phind-CodeLlama-34B-v1"
model = LlamaForCausalLM.from_pretrained(model_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)
# HumanEval helper
def generate_one_completion(prompt: str):
tokenizer.pad_token = tokenizer.eos_token
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)
# Generate
generate_ids = model.generate(inputs.input_ids.to("cuda"), max_new_tokens=256, do_sample=True, top_p=0.75, top_k=40, temperature=0.1)
completion = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
completion = completion.replace(prompt, "").split("\n\n\n")[0]
return completion
# perform HumanEval
problems = read_problems()
num_samples_per_task = 1
samples = [
dict(task_id=task_id, completion=generate_one_completion(problems[task_id]["prompt"]))
for task_id in tqdm(problems)
for _ in range(num_samples_per_task)
]
write_jsonl("samples.jsonl", samples)
# run `evaluate_functional_correctness samples.jsonl` in your HumanEval code sandbox
Bias, Risks, and Limitations
This model has undergone very limited testing. Additional safety testing should be performed before any real-world deployments.
Training details
- Hardware Type: 32x A100-80GB
- Hours used: 90 GPU-hours
- Cloud Provider: AWS
- Compute Region: us-east-1