Text Generation
Transformers
English
llama
File size: 24,985 Bytes
a7b47e9
c066c6b
 
 
 
a7b47e9
 
da4ab3c
c066c6b
a7b47e9
 
 
 
da4ab3c
a7b47e9
c066c6b
a7b47e9
 
 
da4ab3c
 
 
a7b47e9
 
 
da4ab3c
a7b47e9
 
da4ab3c
a7b47e9
 
da4ab3c
 
a7b47e9
 
 
 
 
 
 
 
 
 
da4ab3c
 
 
 
 
 
 
a7b47e9
 
 
 
 
 
 
 
 
 
 
da4ab3c
 
a7b47e9
 
 
 
 
 
 
 
 
 
da4ab3c
a7b47e9
 
 
 
 
da4ab3c
 
 
a7b47e9
da4ab3c
 
 
a7b47e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da4ab3c
 
a7b47e9
 
da4ab3c
 
a7b47e9
 
da4ab3c
 
a7b47e9
 
 
 
 
 
 
da4ab3c
 
 
a7b47e9
 
da4ab3c
a7b47e9
 
 
 
 
 
 
 
 
 
 
 
 
da4ab3c
a7b47e9
 
da4ab3c
a7b47e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da4ab3c
a7b47e9
da4ab3c
a7b47e9
 
 
 
da4ab3c
 
a7b47e9
 
 
 
 
 
 
 
 
 
 
 
 
 
da4ab3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7b47e9
da4ab3c
a7b47e9
 
da4ab3c
a7b47e9
 
 
 
 
 
 
da4ab3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7b47e9
 
 
 
 
da4ab3c
a7b47e9
 
da4ab3c
 
 
 
a7b47e9
da4ab3c
a7b47e9
 
 
 
 
 
 
 
 
 
da4ab3c
a7b47e9
 
 
 
da4ab3c
 
 
a7b47e9
 
 
da4ab3c
 
 
a7b47e9
 
da4ab3c
a7b47e9
da4ab3c
 
a7b47e9
 
da4ab3c
a7b47e9
da4ab3c
a7b47e9
 
 
 
 
 
 
 
 
 
 
 
da4ab3c
a7b47e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da4ab3c
a7b47e9
 
 
 
 
 
 
 
 
da4ab3c
 
 
 
 
 
 
a7b47e9
da4ab3c
 
 
 
 
a7b47e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da4ab3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7b47e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
---
language:
- en
license: llama2
library_name: transformers
datasets:
- garage-bAInd/Open-Platypus
- Open-Orca/OpenOrca
model_name: OpenOrca Platypus2 13B
inference: false
model_creator: Open-Orca
model_link: https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B
model_type: llama
pipeline_tag: text-generation
quantized_by: TheBloke
base_model: Open-Orca/OpenOrca-Platypus2-13B
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# OpenOrca Platypus2 13B - GGML
- Model creator: [Open-Orca](https://huggingface.co/Open-Orca)
- Original model: [OpenOrca Platypus2 13B](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B)

## Description

This repo contains GGML format model files for [Open-Orca's OpenOrca Platypus2 13B](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B).

### Important note regarding GGML files.

The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.

Please use the GGUF models instead.
### About GGML

GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), a fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with CUDA GPU acceleration via the c_transformers backend.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.

## Repositories available

* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGUF)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML)
* [Open-Orca's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B)

## Prompt template: Alpaca-InstructOnly

```
### Instruction:

{prompt}

### Response:

```

<!-- compatibility_ggml start -->
## Compatibility

These quantised GGML files are compatible with llama.cpp between June 6th (commit `2d43387`) and August 21st 2023.

For support with latest llama.cpp, please use GGUF files instead.

The final llama.cpp commit with support for GGML was: [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)

As of August 23rd 2023 they are still compatible with all UIs, libraries and utilities which use GGML. This may change in the future.

## Explanation of the new k-quant methods
<details>
  <summary>Click to see details</summary>

The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.

Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_ggml end -->

## Provided files

| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [openorca-platypus2-13b.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q2_K.bin) | q2_K | 2 | 5.74 GB| 8.24 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| [openorca-platypus2-13b.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 5.87 GB| 8.37 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| [openorca-platypus2-13b.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 6.53 GB| 9.03 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| [openorca-platypus2-13b.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 7.14 GB| 9.64 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| [openorca-platypus2-13b.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q4_0.bin) | q4_0 | 4 | 7.32 GB| 9.82 GB | Original quant method, 4-bit. |
| [openorca-platypus2-13b.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 7.56 GB| 10.06 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| [openorca-platypus2-13b.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 8.06 GB| 10.56 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| [openorca-platypus2-13b.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q4_1.bin) | q4_1 | 4 | 8.14 GB| 10.64 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
| [openorca-platypus2-13b.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q5_0.bin) | q5_0 | 5 | 8.95 GB| 11.45 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
| [openorca-platypus2-13b.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 9.14 GB| 11.64 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| [openorca-platypus2-13b.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 9.40 GB| 11.90 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| [openorca-platypus2-13b.ggmlv3.q5_1.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q5_1.bin) | q5_1 | 5 | 9.76 GB| 12.26 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
| [openorca-platypus2-13b.ggmlv3.q6_K.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q6_K.bin) | q6_K | 6 | 10.83 GB| 13.33 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
| [openorca-platypus2-13b.ggmlv3.q8_0.bin](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGML/blob/main/openorca-platypus2-13b.ggmlv3.q8_0.bin) | q8_0 | 8 | 13.83 GB| 16.33 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |

**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

## How to run in `llama.cpp`

Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier.

For compatibility with latest llama.cpp, please use GGUF files instead.

```
./main -t 10 -ngl 32 -m openorca-platypus2-13b.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction:\n\nWrite a story about llamas\n\n### Response:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.

Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change `-c 2048` to the desired sequence length for this model. For example, `-c 4096` for a Llama 2 model.  For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.

If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`

For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)

## How to run in `text-generation-webui`

Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute.

Thanks to the [chirper.ai](https://chirper.ai) team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: Open-Orca's OpenOrca Platypus2 13B


<p><h1>🐋 The First OrcaPlatypus! 🐋</h1></p>

![Platty](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypusMerge.jpg)


# OpenOrca-Platypus2-13B

OpenOrca-Platypus2-13B is a merge of [`garage-bAInd/Platypus2-13B`](https://huggingface.co/garage-bAInd/Platypus2-13B) and [`Open-Orca/OpenOrcaxOpenChat-Preview2-13B`](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B).

This model is more than the sum of its parts! We are happy to be teaming up with the [Platypus](https://platypus-llm.github.io/) team to bring you a new model which once again tops the leaderboards!

Want to visualize our full (pre-filtering) dataset? Check out our [Nomic Atlas Map](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2).


[<img src="https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B/resolve/main/OpenOrca%20Nomic%20Atlas.png" alt="Atlas Nomic Dataset Map" width="400" height="400" />](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2)


We are in-process with training more models, so keep a look out on our org for releases coming soon with exciting partners.

We will also give sneak-peak announcements on our Discord, which you can find here:

https://AlignmentLab.ai

# Evaluation

## HuggingFace Leaderboard Performance

![HF Leaderboard](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypus13BHFLeaderboard.webp)


| Metric | Value |
|-----------------------|-------|
| MMLU (5-shot)         | 59.5  |
| ARC (25-shot)         | 62.88 |
| HellaSwag (10-shot)   | 83.19 |
| TruthfulQA (0-shot)   | 52.69 |
| Avg.                  | 64.56 |

We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.

Please see below for detailed instructions on reproducing benchmark results.


## AGIEval Performance

We compare our results to our base Preview2 model (using LM Evaluation Harness).

We find **112%** of the base model's performance on AGI Eval, averaging **0.463**.
A large part of this boost is the substantial improvement to LSAT Logical Reasoning performance.

![OpenOrca-Platypus2-13B AGIEval Performance](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypus13BAGIEval.webp "AGIEval Performance")

## BigBench-Hard Performance

We compare our results to our base Preview2 model (using LM Evaluation Harness).

We find **105%** of the base model's performance on BigBench-Hard, averaging **0.442**.

![OpenOrca-Platypus2-13B BigBench-Hard Performance](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypus13BBigBenchHard.webp "BigBench-Hard Performance")


# Model Details

* **Trained by**: **Platypus2-13B** trained by Cole Hunter & Ariel Lee; **OpenOrcaxOpenChat-Preview2-13B** trained by Open-Orca
* **Model type:**  **OpenOrca-Platypus2-13B** is an auto-regressive language model based on the Lllama 2 transformer architecture.
* **Language(s)**: English
* **License for Platypus2-13B base weights**: Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/))
* **License for OpenOrcaxOpenChat-Preview2-13B base weights**: Llama 2 Commercial


# Prompting

## Prompt Template for base Platypus2-13B

```
### Instruction:

<prompt> (without the <>)

### Response:
```


## Prompt Template for base OpenOrcaxOpenChat-Preview2-13B

OpenChat Llama2 V1: see [OpenOrcaxOpenChat-Preview2-13B](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B) for additional information. 


# Training

## Training Datasets

`garage-bAInd/Platypus2-13B` trained using STEM and logic based dataset [`garage-bAInd/Open-Platypus`](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).

Please see our [paper](https://arxiv.org/abs/2308.07317) and [project webpage](https://platypus-llm.github.io) for additional information.

`Open-Orca/OpenOrcaxOpenChat-Preview2-13B` trained using a refined subset of most of the GPT-4 data from the [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca).


## Training Procedure

`Open-Orca/Platypus2-13B` was instruction fine-tuned using LoRA on 1x A100-80GB.
For training details and inference instructions please see the [Platypus](https://github.com/arielnlee/Platypus) GitHub repo.


# Supplemental

## Reproducing Evaluation Results (for HuggingFace Leaderboard Eval)

Install LM Evaluation Harness:
```
# clone repository
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
# change to repo directory
cd lm-evaluation-harness
# check out the correct commit
git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
# install
pip install -e .
```
Each task was evaluated on a single A100-80GB GPU.

ARC:
```
python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks arc_challenge --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/arc_challenge_25shot.json --device cuda --num_fewshot 25
```

HellaSwag:
```
python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks hellaswag --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/hellaswag_10shot.json --device cuda --num_fewshot 10
```

MMLU:
```
python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks hendrycksTest-* --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/mmlu_5shot.json --device cuda --num_fewshot 5
```

TruthfulQA:
```
python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks truthfulqa_mc --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/truthfulqa_0shot.json --device cuda
```


## Limitations and bias

Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model.

Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/


# Citations

```bibtex
@software{hunterlee2023orcaplaty1
  title = {OpenOrcaPlatypus: Llama2-13B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset and Merged with divergent STEM and Logic Dataset Model},
  author = {Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz and Bleys Goodson and Wing Lian and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
  year = {2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
  howpublished = {\url{https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B},
}
@article{platypus2023,
    title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs}, 
    author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz},
    booktitle={arXiv preprint arxiv:2308.07317},
    year={2023}
}
@software{OpenOrcaxOpenChatPreview2,
  title = {OpenOrcaxOpenChatPreview2: Llama2-13B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset},
  author = {Guan Wang and Bleys Goodson and Wing Lian and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
  year = {2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
  howpublished = {\url{https://https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B},
}
@software{openchat,
  title = {{OpenChat: Advancing Open-source Language Models with Imperfect Data}},
  author = {Wang, Guan and Cheng, Sijie and Yu, Qiying and Liu, Changling},
  doi = {10.5281/zenodo.8105775},
  url = {https://github.com/imoneoi/openchat},
  version = {pre-release},
  year = {2023},
  month = {7},
}
@misc{mukherjee2023orca,
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, 
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
      year={2023},
      eprint={2306.02707},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{touvron2023llama,
    title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, 
    author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
    year={2023},
    eprint= arXiv 2307.09288
}
@misc{longpre2023flan,
      title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning}, 
      author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
      year={2023},
      eprint={2301.13688},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
@article{hu2021lora,
  title={LoRA: Low-Rank Adaptation of Large Language Models},
  author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu},
  journal={CoRR},
  year={2021}
}
```