|
--- |
|
inference: false |
|
language: |
|
- zh |
|
- en |
|
- fr |
|
- de |
|
- ja |
|
- ko |
|
- it |
|
- ru |
|
library_name: transformers |
|
license: llama2 |
|
model_creator: OpenBuddy |
|
model_link: https://huggingface.co/OpenBuddy/openbuddy-llama2-13b-v11.1-bf16 |
|
model_name: OpenBuddy Llama2 13B v11.1 |
|
model_type: llama |
|
pipeline_tag: text-generation |
|
quantized_by: TheBloke |
|
--- |
|
|
|
<!-- header start --> |
|
<!-- 200823 --> |
|
<div style="width: auto; margin-left: auto; margin-right: auto"> |
|
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> |
|
</div> |
|
<div style="display: flex; flex-direction: column; align-items: flex-end;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> |
|
</div> |
|
</div> |
|
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> |
|
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> |
|
<!-- header end --> |
|
|
|
# OpenBuddy Llama2 13B v11.1 - GPTQ |
|
- Model creator: [OpenBuddy](https://huggingface.co/OpenBuddy) |
|
- Original model: [OpenBuddy Llama2 13B v11.1](https://huggingface.co/OpenBuddy/openbuddy-llama2-13b-v11.1-bf16) |
|
|
|
<!-- description start --> |
|
## Description |
|
|
|
This repo contains GPTQ model files for [OpenBuddy's OpenBuddy Llama2 13B v11.1](https://huggingface.co/OpenBuddy/openbuddy-llama2-13b-v11.1-bf16). |
|
|
|
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. |
|
|
|
<!-- description end --> |
|
<!-- repositories-available start --> |
|
## Repositories available |
|
|
|
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/OpenBuddy-Llama2-13B-v11.1-GPTQ) |
|
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/OpenBuddy-Llama2-13B-v11.1-GGUF) |
|
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/OpenBuddy-Llama2-13B-v11.1-GGML) |
|
* [OpenBuddy's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenBuddy/openbuddy-llama2-13b-v11.1-bf16) |
|
<!-- repositories-available end --> |
|
|
|
<!-- prompt-template start --> |
|
## Prompt template: Vicuna-Short |
|
|
|
``` |
|
You are a helpful AI assistant. |
|
|
|
USER: {prompt} |
|
ASSISTANT: |
|
|
|
``` |
|
|
|
<!-- prompt-template end --> |
|
|
|
<!-- README_GPTQ.md-provided-files start --> |
|
## Provided files and GPTQ parameters |
|
|
|
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. |
|
|
|
Each separate quant is in a different branch. See below for instructions on fetching from different branches. |
|
|
|
All GPTQ files are made with AutoGPTQ. |
|
|
|
<details> |
|
<summary>Explanation of GPTQ parameters</summary> |
|
|
|
- Bits: The bit size of the quantised model. |
|
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. |
|
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. |
|
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. |
|
- GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). |
|
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. |
|
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit. |
|
|
|
</details> |
|
|
|
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | |
|
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | |
|
| [main](https://huggingface.co/TheBloke/OpenBuddy-Llama2-13B-v11.1-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.37 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. | |
|
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/OpenBuddy-Llama2-13B-v11.1-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.12 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. | |
|
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/OpenBuddy-Llama2-13B-v11.1-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.48 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. | |
|
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/OpenBuddy-Llama2-13B-v11.1-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.77 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. | |
|
|
|
<!-- README_GPTQ.md-provided-files end --> |
|
|
|
<!-- README_GPTQ.md-download-from-branches start --> |
|
## How to download from branches |
|
|
|
- In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/OpenBuddy-Llama2-13B-v11.1-GPTQ:gptq-4bit-32g-actorder_True` |
|
- With Git, you can clone a branch with: |
|
``` |
|
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/OpenBuddy-Llama2-13B-v11.1-GPTQ |
|
``` |
|
- In Python Transformers code, the branch is the `revision` parameter; see below. |
|
<!-- README_GPTQ.md-download-from-branches end --> |
|
<!-- README_GPTQ.md-text-generation-webui start --> |
|
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui). |
|
|
|
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). |
|
|
|
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. |
|
|
|
1. Click the **Model tab**. |
|
2. Under **Download custom model or LoRA**, enter `TheBloke/OpenBuddy-Llama2-13B-v11.1-GPTQ`. |
|
- To download from a specific branch, enter for example `TheBloke/OpenBuddy-Llama2-13B-v11.1-GPTQ:gptq-4bit-32g-actorder_True` |
|
- see Provided Files above for the list of branches for each option. |
|
3. Click **Download**. |
|
4. The model will start downloading. Once it's finished it will say "Done". |
|
5. In the top left, click the refresh icon next to **Model**. |
|
6. In the **Model** dropdown, choose the model you just downloaded: `OpenBuddy-Llama2-13B-v11.1-GPTQ` |
|
7. The model will automatically load, and is now ready for use! |
|
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. |
|
* Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. |
|
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started! |
|
<!-- README_GPTQ.md-text-generation-webui end --> |
|
|
|
<!-- README_GPTQ.md-use-from-python start --> |
|
## How to use this GPTQ model from Python code |
|
|
|
### Install the necessary packages |
|
|
|
Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. |
|
|
|
```shell |
|
pip3 install transformers>=4.32.0 optimum>=1.12.0 |
|
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7 |
|
``` |
|
|
|
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead: |
|
|
|
```shell |
|
pip3 uninstall -y auto-gptq |
|
git clone https://github.com/PanQiWei/AutoGPTQ |
|
cd AutoGPTQ |
|
pip3 install . |
|
``` |
|
|
|
### For CodeLlama models only: you must use Transformers 4.33.0 or later. |
|
|
|
If 4.33.0 is not yet released when you read this, you will need to install Transformers from source: |
|
```shell |
|
pip3 uninstall -y transformers |
|
pip3 install git+https://github.com/huggingface/transformers.git |
|
``` |
|
|
|
### You can then use the following code |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
model_name_or_path = "TheBloke/OpenBuddy-Llama2-13B-v11.1-GPTQ" |
|
# To use a different branch, change revision |
|
# For example: revision="gptq-4bit-32g-actorder_True" |
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
revision="main") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) |
|
|
|
prompt = "Tell me about AI" |
|
prompt_template=f'''You are a helpful AI assistant. |
|
|
|
USER: {prompt} |
|
ASSISTANT: |
|
|
|
''' |
|
|
|
print("\n\n*** Generate:") |
|
|
|
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() |
|
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) |
|
print(tokenizer.decode(output[0])) |
|
|
|
# Inference can also be done using transformers' pipeline |
|
|
|
print("*** Pipeline:") |
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
max_new_tokens=512, |
|
temperature=0.7, |
|
top_p=0.95, |
|
repetition_penalty=1.15 |
|
) |
|
|
|
print(pipe(prompt_template)[0]['generated_text']) |
|
``` |
|
<!-- README_GPTQ.md-use-from-python end --> |
|
|
|
<!-- README_GPTQ.md-compatibility start --> |
|
## Compatibility |
|
|
|
The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI). |
|
|
|
[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility. |
|
|
|
[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models. |
|
<!-- README_GPTQ.md-compatibility end --> |
|
|
|
<!-- footer start --> |
|
<!-- 200823 --> |
|
## Discord |
|
|
|
For further support, and discussions on these models and AI in general, join us at: |
|
|
|
[TheBloke AI's Discord server](https://discord.gg/theblokeai) |
|
|
|
## Thanks, and how to contribute. |
|
|
|
Thanks to the [chirper.ai](https://chirper.ai) team! |
|
|
|
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. |
|
|
|
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. |
|
|
|
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. |
|
|
|
* Patreon: https://patreon.com/TheBlokeAI |
|
* Ko-Fi: https://ko-fi.com/TheBlokeAI |
|
|
|
**Special thanks to**: Aemon Algiz. |
|
|
|
**Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser |
|
|
|
|
|
Thank you to all my generous patrons and donaters! |
|
|
|
And thank you again to a16z for their generous grant. |
|
|
|
<!-- footer end --> |
|
|
|
# Original model card: OpenBuddy's OpenBuddy Llama2 13B v11.1 |
|
|
|
|
|
|
|
# OpenBuddy - Open Multilingual Chatbot |
|
|
|
GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) |
|
|
|
Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) |
|
|
|
![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) |
|
|
|
# Copyright Notice |
|
|
|
This model is built upon Meta's LLaMA series of models and is subject to Meta's licensing agreement. |
|
|
|
This model is intended for use only by individuals who have obtained approval from Meta and are eligible to download LLaMA. |
|
|
|
If you have not obtained approval from Meta, you must visit the https://ai.meta.com/llama/ page, read and agree to the model's licensing agreement, submit an application, and wait for approval from Meta before downloading the model from this page. |
|
|
|
## Disclaimer |
|
|
|
All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. |
|
|
|
OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. |
|
|
|
By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. |
|
|
|
|
|
## 免责声明 |
|
|
|
所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 |
|
|
|
OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 |
|
|
|
使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。 |
|
|