File size: 8,885 Bytes
b746e39 38e0558 b746e39 38e0558 b746e39 38e0558 b746e39 5f024d5 b746e39 5f024d5 b746e39 5f024d5 b746e39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
<!-- ## **HunyuanDiT** -->
<!-- [[Technical Report]()]   [[Project Page]()]   [[Model Card]()] <br>
[[🤗 Demo (Realistic)]()]   -->
<p align="center">
<img src="./asset/logo.png" height=30>
</p>
<div align="center" style="font-size: 30px;font-weight: bold;">Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding</div>
<!-- <div align="center">
<a href="https://github.com/Tencent/HunyuanDiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT Code&message=Github&color=blue&logo=github-pages"></a>  
<a href="https://dit.hunyuan.tencent.com"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a>  
<a href="https://arxiv.org/abs/"><img src="https://img.shields.io/static/v1?label=Paper&message=Arxiv:HunYuan-DiT&color=red&logo=arxiv"></a>  
<a href="https://arxiv.org/abs/2403.08857"><img src="https://img.shields.io/static/v1?label=Paper&message=Arxiv:DialogGen&color=red&logo=arxiv"></a>  
<a href="https://huggingface.co/Tencent-Hunyuan/Hunyuan-DiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT&message=HuggingFace&color=yellow"></a>  
</div> -->
<!-- ## Contents
* [Dependencies and Installation](#-Dependencies-and-Installation)
* [Inference](#-Inference)
* [Download Models](#-download-models)
* [Acknowledgement](#acknowledgements)
* [Citation](#bibtex) -->
# **Abstract**
We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully designed the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-round multi-modal dialogue with users, generating and refining images according to the context.
Through our carefully designed holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models.
# **Hunyuan-DiT Key Features**
## **Chinese-English Bilingual DiT Architecture**
We propose HunyuanDiT, a text-to-image generation model based on Diffusion transformer with fine-grained understanding of Chinese and English. In order to build Hunyuan DiT, we carefully designed the Transformer structure, text encoder and positional encoding. We also built a complete data pipeline from scratch to update and evaluate data to help model optimization iterations. To achieve fine-grained text understanding, we train a multi-modal large language model to optimize text descriptions of images. Ultimately, Hunyuan DiT is able to conduct multiple rounds of dialogue with users, generating and improving images based on context.
<p align="center">
<img src="./asset/framework.png" height=500>
</p>
## **Multi-turn Text2Image Generation**
Understanding natural language instructions and performing multi-turn interaction with users are important for a
text-to-image system. It can help build a dynamic and iterative creation process that bring the user’s idea into reality
step by step. In this section, we will detail how we empower Hunyuan-DiT with the ability to perform multi-round
conversations and image generation. We train MLLM to understand the multi-round user dialogue
and output the new text prompt for image generation.
<p align="center">
<img src="./asset/mllm.png" height=300>
</p>
## **Comparisons**
In order to comprehensively compare the generation capabilities of HunyuanDiT and other models, we constructed a 4-dimensional test set, including Text-Image Consistency, Excluding AI Artifacts, Subject Clarity, Aesthetic. More than 50 professional evaluators performs the evaluation.
<p align="center">
<table>
<thead>
<tr>
<th rowspan="2">Type</th> <th rowspan="2">Model</th> <th>Text-Image Consistency (%)</th> <th>Excluding AI Artifacts (%)</th> <th>Subject Clarity (%)</th> <th rowspan="2">Aesthetics (%)</th> <th rowspan="2">Overall (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDXL</td> <td>64.3</td> <td>60.6</td> <td>91.1</td> <td>76.3</td> <td>42.7</td>
</tr>
<tr>
<td>Playground 2.5</td> <td>71.9</td> <td>70.8</td> <td>94.9</td> <td>83.3</td> <td>54.3</td>
</tr>
<tr>
<td>SD 3</td> <td>77.1</td> <td>69.3</td> <td>94.6</td> <td>82.5</td> <td>56.7</td>
</tr>
<tr style="font-weight: bold; background-color: #f2f2f2;"> <td>Hunyuan-DiT</td> <td>74.2</td> <td>74.3</td> <td>95.4</td> <td>86.6</td> <td>59.0</td> </tr>
<tr>
<td>MidJourney v6</td> <td>73.5</td> <td>80.2</td> <td>93.5</td> <td>87.2</td> <td>63.3</td>
</tr>
<tr>
<td>DALL-E 3</td> <td>83.9</td> <td>80.3</td> <td>96.5</td> <td>89.4</td> <td>71.0</td>
</tr>
</table>
</p>
## **Visualization**
* **Chinese Elements**
<p align="center">
<img src="./asset/chinese elements understanding.png" height=280>
</p>
* **Long Text Input**
<p align="center">
<img src="./asset/long text understanding.png" height=900>
<figcaption>Comparison between Hunyuan-DiT and other text-to-image models. The image with the highest resolution on the far left is the result of Hunyuan-Dit. The others, from top left to bottom right, are as follows: Dalle3, Midjourney v6, SD3, Playground 2.5, PixArt, SDXL, Baidu Yige, WanXiang.
</p>
* **Multi-turn Text2Image Generation**
<p align="center">
<a href="https://prc-videoframe-pub-1258344703.cos.ap-guangzhou.myqcloud.com/ad_creative_engine/projectpage/1deab38689342431e63606e01e16961c.mov">
<img src="./asset/cover.png" alt="Watch the video" height="800">
</a>
</p>
# **Dependencies and Installation**
Ensure your machine is equipped with a GPU having over 20GB of memory.
Begin by cloning the repository:
```bash
git clone https://github.com/tencent/HunyuanDiT
cd HunyuanDiT
```
We provide an `environment.yml` file for setting up a Conda environment.
Installation instructions for Conda are available [here](https://docs.anaconda.com/free/miniconda/index.html).
```shell
# Prepare conda environment
conda env create -f environment.yml
# Activate the environment
conda activate HunyuanDiT
# Install pip dependencies
python -m pip install -r requirements.txt
# Install flash attention v2 (for acceleration, requires CUDA 11.6 or above)
python -m pip install git+https://github.com/Dao-AILab/[email protected]
```
# **Download Models**
To download the model, first install the huggingface-cli. Installation instructions are available [here](https://huggingface.co/docs/huggingface_hub/guides/cli):
```sh
# Create a directory named 'ckpts' where the model will be saved, fulfilling the prerequisites for running the demo.
mkdir ckpts
# Use the huggingface-cli tool to download the model.
# The download time may vary from 10 minutes to 1 hour depending on network conditions.
huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./ckpts
```
<!-- For more information about the model, visit the Hugging Face repository [here](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT). -->
All models will be automatically downloaded. For more information about the model, visit the Hugging Face repository [here](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT).
| Model | #Params | url|
|:-----------------|:--------|:--------------|
|mT5 | xxB | [mT5](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/mt5)|
| CLIP | xxB | [CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/clip_text_encoder)|
| DialogGen | 7B | [DialogGen](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/dialoggen)|
| sdxl-vae-fp16-fix | xxB | [sdxl-vae-fp16-fix](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/sdxl-vae-fp16-fix)|
| Hunyuan-DiT | xxB | [Hunyuan-DiT](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/model)|
# **Inference**
```bash
# prompt-enhancement + text2image, torch mode
python sample_t2i.py --prompt "渔舟唱晚"
# close prompt enhancement, torch mode
python sample_t2i.py --prompt "渔舟唱晚" --no-enhance
# close prompt enhancement, flash attention mode
python sample_t2i.py --infer-mode fa --prompt "渔舟唱晚"
```
more example prompts can be found in [example_prompts.txt](example_prompts.txt)
Note: 20G GPU memory is used for sampling in single GPU
<!-- # **To-Do List**
- [x] Inference code
- [ ] Provide Tensorrt engine -->
# **BibTeX**
If you find Hunyuan-DiT useful for your research and applications, please cite using this BibTeX:
```BibTeX
@inproceedings{,
title={},
author={},
booktitle={},
year={2024}
}
```
|