Tencent-Hunyuan
commited on
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!-- ## **HunyuanDiT** -->
|
2 |
+
<!-- [[Technical Report]()]   [[Project Page]()]   [[Model Card]()] <br>
|
3 |
+
|
4 |
+
[[🤗 Demo (Realistic)]()]   -->
|
5 |
+
<p align="center">
|
6 |
+
<img src="./asset/logo.png" height=100>
|
7 |
+
</p>
|
8 |
+
|
9 |
+
<div align="center" style="font-size: 30px;font-weight: bold;">Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding</div>
|
10 |
+
|
11 |
+
<div align="center">
|
12 |
+
<a href="https://github.com/Tencent/HunyuanDiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT Code&message=Github&color=blue&logo=github-pages"></a>  
|
13 |
+
<a href="https://dit.hunyuan.tencent.com"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a>  
|
14 |
+
<a href="https://arxiv.org/abs/"><img src="https://img.shields.io/static/v1?label=Paper&message=Arxiv:HunYuan-DiT&color=red&logo=arxiv"></a>  
|
15 |
+
<a href="https://arxiv.org/abs/2403.08857"><img src="https://img.shields.io/static/v1?label=Paper&message=Arxiv:DialogGen&color=red&logo=arxiv"></a>  
|
16 |
+
<a href="https://huggingface.co/Tencent-Hunyuan/Hunyuan-DiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT&message=HuggingFace&color=yellow"></a>  
|
17 |
+
|
18 |
+
</div>
|
19 |
+
|
20 |
+
|
21 |
+
<!-- ## Contents
|
22 |
+
* [Dependencies and Installation](#-Dependencies-and-Installation)
|
23 |
+
* [Inference](#-Inference)
|
24 |
+
* [Download Models](#-download-models)
|
25 |
+
|
26 |
+
* [Acknowledgement](#acknowledgements)
|
27 |
+
* [Citation](#bibtex) -->
|
28 |
+
|
29 |
+
# **Abstract**
|
30 |
+
|
31 |
+
We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully designed the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-round multi-modal dialogue with users, generating and refining images according to the context.
|
32 |
+
Through our carefully designed holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models.
|
33 |
+
|
34 |
+
|
35 |
+
# **Hunyuan-DiT Key Features**
|
36 |
+
## **Chinese-English Bilingual DiT Architecture**
|
37 |
+
We propose HunyuanDiT, a text-to-image generation model based on Diffusion transformer with fine-grained understanding of Chinese and English. In order to build Hunyuan DiT, we carefully designed the Transformer structure, text encoder and positional encoding. We also built a complete data pipeline from scratch to update and evaluate data to help model optimization iterations. To achieve fine-grained text understanding, we train a multi-modal large language model to optimize text descriptions of images. Ultimately, Hunyuan DiT is able to conduct multiple rounds of dialogue with users, generating and improving images based on context.
|
38 |
+
<p align="center">
|
39 |
+
<img src="./asset/framework.png" height=500>
|
40 |
+
</p>
|
41 |
+
|
42 |
+
## **Multi-turn Text2Image Generation**
|
43 |
+
Understanding natural language instructions and performing multi-turn interaction with users are important for a
|
44 |
+
text-to-image system. It can help build a dynamic and iterative creation process that bring the user’s idea into reality
|
45 |
+
step by step. In this section, we will detail how we empower Hunyuan-DiT with the ability to perform multi-round
|
46 |
+
conversations and image generation. We train MLLM to understand the multi-round user dialogue
|
47 |
+
and output the new text prompt for image generation.
|
48 |
+
<p align="center">
|
49 |
+
<img src="./asset/mllm.png" height=300>
|
50 |
+
</p>
|
51 |
+
|
52 |
+
## **Comparisons**
|
53 |
+
In order to comprehensively compare the generation capabilities of HunyuanDiT and other models, we constructed a 4-dimensional test set, including Text-Image Consistency, Excluding AI Artifacts, Subject Clarity, Aesthetic. More than 50 professional evaluators performs the evaluation.
|
54 |
+
|
55 |
+
<p align="center">
|
56 |
+
<table>
|
57 |
+
<thead>
|
58 |
+
<tr>
|
59 |
+
<th rowspan="2">Type</th> <th rowspan="2">Model</th> <th>Text-Image Consistency (%)</th> <th>Excluding AI Artifacts (%)</th> <th>Subject Clarity (%)</th> <th rowspan="2">Aesthetics (%)</th> <th rowspan="2">Overall (%)</th>
|
60 |
+
</tr>
|
61 |
+
</thead>
|
62 |
+
<tbody>
|
63 |
+
<tr>
|
64 |
+
<td rowspan="3">Open Source</td>
|
65 |
+
<td>SDXL</td> <td>64.3</td> <td>60.6</td> <td>91.1</td> <td>76.3</td> <td>42.7</td>
|
66 |
+
</tr>
|
67 |
+
<tr>
|
68 |
+
<td>Playground 2.5</td> <td>71.9</td> <td>70.8</td> <td>94.9</td> <td>83.3</td> <td>54.3</td>
|
69 |
+
</tr>
|
70 |
+
<tr style="font-weight: bold; background-color: #f2f2f2;"> <td>Hunyuan-DiT</td> <td>74.2</td> <td>74.3</td> <td>95.4</td> <td>86.6</td> <td>59.0</td> </tr>
|
71 |
+
<tr>
|
72 |
+
<td rowspan="3">Closed Source</td>
|
73 |
+
<td>SD 3</td> <td>77.1</td> <td>69.3</td> <td>94.6</td> <td>82.5</td> <td>56.7</td>
|
74 |
+
|
75 |
+
</tr>
|
76 |
+
<tr>
|
77 |
+
<td>MidJourney v6</td> <td>73.5</td> <td>80.2</td> <td>93.5</td> <td>87.2</td> <td>63.3</td>
|
78 |
+
</tr>
|
79 |
+
<tr>
|
80 |
+
<td>DALL-E 3</td> <td>83.9</td> <td>80.3</td> <td>96.5</td> <td>89.4</td> <td>71.0</td>
|
81 |
+
</tr>
|
82 |
+
</table>
|
83 |
+
</p>
|
84 |
+
|
85 |
+
## **Visualization**
|
86 |
+
|
87 |
+
* **Chinese Elements**
|
88 |
+
<p align="center">
|
89 |
+
<img src="./asset/chinese elements understanding.png" height=280>
|
90 |
+
</p>
|
91 |
+
|
92 |
+
* **Long Text Input**
|
93 |
+
|
94 |
+
|
95 |
+
<p align="center">
|
96 |
+
<img src="./asset/long text understanding.png" height=900>
|
97 |
+
<figcaption>Comparison between Hunyuan-DiT and other text-to-image models. The image with the highest resolution on the far left is the result of Hunyuan-Dit. The others, from top left to bottom right, are as follows: Dalle3, Midjourney v6, SD3, Playground 2.5, PixArt, SDXL, Baidu Yige, WanXiang.
|
98 |
+
</p>
|
99 |
+
|
100 |
+
* **Multi-turn Text2Image Generation**
|
101 |
+
<p align="center">
|
102 |
+
<a href="https://prc-videoframe-pub-1258344703.cos.ap-guangzhou.myqcloud.com/ad_creative_engine/projectpage/1deab38689342431e63606e01e16961c.mov">
|
103 |
+
<img src="./asset/cover.png" alt="Watch the video" height="800">
|
104 |
+
</a>
|
105 |
+
</p>
|
106 |
+
|
107 |
+
# **Dependencies and Installation**
|
108 |
+
Ensure your machine is equipped with a GPU having over 20GB of memory.
|
109 |
+
|
110 |
+
Begin by cloning the repository:
|
111 |
+
```bash
|
112 |
+
git clone https://github.com/tencent/HunyuanDiT
|
113 |
+
cd HunyuanDiT
|
114 |
+
```
|
115 |
+
We provide an `environment.yml` file for setting up a Conda environment.
|
116 |
+
|
117 |
+
|
118 |
+
Installation instructions for Conda are available [here](https://docs.anaconda.com/free/miniconda/index.html).
|
119 |
+
|
120 |
+
```shell
|
121 |
+
# Prepare conda environment
|
122 |
+
conda env create -f environment.yml
|
123 |
+
|
124 |
+
# Activate the environment
|
125 |
+
conda activate HunyuanDiT
|
126 |
+
|
127 |
+
# Install pip dependencies
|
128 |
+
python -m pip install -r requirements.txt
|
129 |
+
|
130 |
+
# Install flash attention v2 (for acceleration, requires CUDA 11.6 or above)
|
131 |
+
python -m pip install git+https://github.com/Dao-AILab/[email protected]
|
132 |
+
```
|
133 |
+
|
134 |
+
# **Download Models**
|
135 |
+
To download the model, first install the huggingface-cli. Installation instructions are available [here](https://huggingface.co/docs/huggingface_hub/guides/cli):
|
136 |
+
|
137 |
+
```sh
|
138 |
+
# Create a directory named 'ckpts' where the model will be saved, fulfilling the prerequisites for running the demo.
|
139 |
+
mkdir ckpts
|
140 |
+
# Use the huggingface-cli tool to download the model.
|
141 |
+
# The download time may vary from 10 minutes to 1 hour depending on network conditions.
|
142 |
+
huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./ckpts
|
143 |
+
```
|
144 |
+
<!-- For more information about the model, visit the Hugging Face repository [here](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT). -->
|
145 |
+
|
146 |
+
|
147 |
+
All models will be automatically downloaded. For more information about the model, visit the Hugging Face repository [here](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT).
|
148 |
+
|
149 |
+
| Model | #Params | url|
|
150 |
+
|:-----------------|:--------|:--------------|
|
151 |
+
|mT5 | xxB | [mT5](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/mt5)|
|
152 |
+
| CLIP | xxB | [CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/clip_text_encoder)|
|
153 |
+
| DialogGen | 7B | [DialogGen](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/dialoggen)|
|
154 |
+
| sdxl-vae-fp16-fix | xxB | [sdxl-vae-fp16-fix](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/sdxl-vae-fp16-fix)|
|
155 |
+
| Hunyuan-DiT | xxB | [Hunyuan-DiT](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/model)|
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
# **Inference**
|
160 |
+
```bash
|
161 |
+
# prompt-enhancement + text2image, torch mode
|
162 |
+
python sample_t2i.py --prompt "渔舟唱晚"
|
163 |
+
|
164 |
+
# close prompt enhancement, torch mode
|
165 |
+
python sample_t2i.py --prompt "渔舟唱晚" --no-enhance
|
166 |
+
|
167 |
+
# close prompt enhancement, flash attention mode
|
168 |
+
python sample_t2i.py --infer-mode fa --prompt "渔舟唱晚"
|
169 |
+
```
|
170 |
+
more example prompts can be found in [example_prompts.txt](example_prompts.txt)
|
171 |
+
|
172 |
+
Note: 20G GPU memory is used for sampling in single GPU
|
173 |
+
|
174 |
+
|
175 |
+
<!-- # **To-Do List**
|
176 |
+
|
177 |
+
- [x] Inference code
|
178 |
+
- [ ] Provide Tensorrt engine -->
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
# **BibTeX**
|
185 |
+
If you find Hunyuan-DiT useful for your research and applications, please cite using this BibTeX:
|
186 |
+
|
187 |
+
```BibTeX
|
188 |
+
@inproceedings{,
|
189 |
+
title={},
|
190 |
+
author={},
|
191 |
+
booktitle={},
|
192 |
+
year={2024}
|
193 |
+
}
|
194 |
+
```
|