|
--- |
|
tags: |
|
- code |
|
base_model: |
|
- TechxGenus/CursorCore-Yi-1.5B |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
license: apache-2.0 |
|
--- |
|
|
|
# CursorCore: Assist Programming through Aligning Anything |
|
|
|
<p align="center"> |
|
<a href="http://arxiv.org/abs/2410.07002">[📄arXiv]</a> | |
|
<a href="https://hf.co/papers/2410.07002">[🤗HF Paper]</a> | |
|
<a href="https://huggingface.co/collections/TechxGenus/cursorcore-series-6706618c38598468866b60e2">[🤖Models]</a> | |
|
<a href="https://github.com/TechxGenus/CursorCore">[🛠️Code]</a> | |
|
<a href="https://github.com/TechxGenus/CursorWeb">[Web]</a> | |
|
<a href="https://discord.gg/Z5Tev8fV">[Discord]</a> |
|
</p> |
|
|
|
<hr> |
|
|
|
- [CursorCore: Assist Programming through Aligning Anything](#cursorcore-assist-programming-through-aligning-anything) |
|
- [Introduction](#introduction) |
|
- [Models](#models) |
|
- [Usage](#usage) |
|
- [1) Normal chat](#1-normal-chat) |
|
- [2) Assistant-Conversation](#2-assistant-conversation) |
|
- [3) Web Demo](#3-web-demo) |
|
- [Future Work](#future-work) |
|
- [Citation](#citation) |
|
- [Contribution](#contribution) |
|
|
|
<hr> |
|
|
|
## Introduction |
|
|
|
CursorCore is a series of open-source models designed for AI-assisted programming. It aims to support features such as automated editing and inline chat, replicating the core abilities of closed-source AI-assisted programming tools like Cursor. This is achieved by aligning data generated through Programming-Instruct. Please read [our paper](http://arxiv.org/abs/2410.07002) to learn more. |
|
|
|
<p align="center"> |
|
<img width="100%" alt="conversation" src="https://raw.githubusercontent.com/TechxGenus/CursorCore/main/pictures/conversation.png"> |
|
</p> |
|
|
|
![CursorWeb](https://raw.githubusercontent.com/TechxGenus/CursorCore/main/pictures/CursorWeb.gif) |
|
|
|
## Models |
|
|
|
Our models have been open-sourced on Hugging Face. You can access our models here: [CursorCore-Series](https://huggingface.co/collections/TechxGenus/cursorcore-series-6706618c38598468866b60e2"). We also provide pre-quantized weights for GPTQ and AWQ here: [CursorCore-Quantization](https://huggingface.co/collections/TechxGenus/cursorcore-quantization-67066431f29f252494ee8cf3) |
|
|
|
## Usage |
|
|
|
Here are some examples of how to use our model: |
|
|
|
### 1) Normal chat |
|
|
|
Script: |
|
|
|
````python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"TechxGenus/CursorCore-Yi-9B", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
|
|
messages = [ |
|
{"role": "user", "content": "Hi!"}, |
|
] |
|
prompt = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
inputs = tokenizer.encode(prompt, return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512) |
|
print(tokenizer.decode(outputs[0])) |
|
```` |
|
|
|
Output: |
|
|
|
````txt |
|
<|im_start|>system |
|
You are a helpful programming assistant.<|im_end|> |
|
<|im_start|>user |
|
Hi!<|im_end|> |
|
<|im_start|>assistant |
|
Hello! I'm an AI language model and I can help you with any programming questions you might have. What specific problem or task are you trying to solve?<|im_end|> |
|
```` |
|
|
|
### 2) Assistant-Conversation |
|
|
|
In our work, we introduce a new framework of AI-assisted programming task. It is designed for aligning anything during programming process, used for the implementation of features like Tab and Inline Chat. |
|
|
|
Script 1: |
|
|
|
````python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from eval.utils import prepare_input_for_wf |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"TechxGenus/CursorCore-Yi-9B", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
sample = { |
|
"history": [ |
|
{ |
|
"type": "code", |
|
"lang": "python", |
|
"code": """def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" |
|
} |
|
], |
|
"current": { |
|
"type": "code", |
|
"lang": "python", |
|
"code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" |
|
}, |
|
"user": "" |
|
} |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
prepare_input_for_wf(sample), |
|
tokenize=False, |
|
chat_template="assistant-conversation", |
|
add_generation_prompt=True |
|
) |
|
|
|
inputs = tokenizer.encode(prompt, return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False) |
|
print(tokenizer.decode(outputs[0])) |
|
```` |
|
|
|
Output 1: |
|
|
|
````txt |
|
<|im_start|>system |
|
You are a helpful programming assistant.<|im_end|> |
|
<|im_start|>history |
|
```python |
|
def quick_sort(arr): |
|
if len(arr) <= 1: |
|
return arr |
|
pivot = arr[len(arr) // 2] |
|
left = [x for x in arr if x < pivot] |
|
middle = [x for x in arr if x == pivot] |
|
right = [x for x in arr if x > pivot] |
|
return quick_sort(left) + middle + quick_sort(right) |
|
```<|im_end|> |
|
<|im_start|>current |
|
```python |
|
def quick_sort(array): |
|
if len(arr) <= 1: |
|
return arr |
|
pivot = arr[len(arr) // 2] |
|
left = [x for x in arr if x < pivot] |
|
middle = [x for x in arr if x == pivot] |
|
right = [x for x in arr if x > pivot] |
|
return quick_sort(left) + middle + quick_sort(right) |
|
```<|im_end|> |
|
<|im_start|>assistant |
|
<|next_start|>```python |
|
def quick_sort(array): |
|
if len(array) <= 1: |
|
return array |
|
pivot = array[len(array) // 2] |
|
left = [x for x in array if x < pivot] |
|
middle = [x for x in array if x == pivot] |
|
right = [x for x in array if x > pivot] |
|
return quick_sort(left) + middle + quick_sort(right) |
|
```<|next_end|> |
|
The user has provided a revised code change that corrects the parameter name from `arr` to `array` in the `quick_sort` function. This change ensures consistency in the function definition and avoids potential confusion or errors. |
|
|
|
To implement this, we will: |
|
1. Update the parameter name in the function definition from `arr` to `array`. |
|
2. Ensure that all references to `arr` within the function are updated to `array`. |
|
|
|
This will make the function definition and internal references consistent, improving code readability and maintainability.<|im_end|> |
|
```` |
|
|
|
Script 2: |
|
|
|
````python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from eval.utils import prepare_input_for_wf |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"TechxGenus/CursorCore-Yi-9B", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
sample = { |
|
"history": [], |
|
"current": { |
|
"type": "code", |
|
"lang": "python", |
|
"code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" |
|
}, |
|
"user": "Add Docstring." |
|
} |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
prepare_input_for_wf(sample), |
|
tokenize=False, |
|
chat_template="assistant-conversation", |
|
add_generation_prompt=True |
|
) |
|
|
|
inputs = tokenizer.encode(prompt, return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False) |
|
print(tokenizer.decode(outputs[0])) |
|
```` |
|
|
|
Output 2: |
|
|
|
````txt |
|
<|im_start|>system |
|
You are a helpful programming assistant.<|im_end|> |
|
<|im_start|>current |
|
```python |
|
def quick_sort(array): |
|
if len(arr) <= 1: |
|
return arr |
|
pivot = arr[len(arr) // 2] |
|
left = [x for x in arr if x < pivot] |
|
middle = [x for x in arr if x == pivot] |
|
right = [x for x in arr if x > pivot] |
|
return quick_sort(left) + middle + quick_sort(right) |
|
```<|im_end|> |
|
<|im_start|>user |
|
Add Docstring.<|im_end|> |
|
<|im_start|>assistant |
|
<|next_start|>```python |
|
def quick_sort(array): |
|
""" |
|
This is an implementation of the quick sort algorithm. |
|
""" |
|
if len(arr) <= 1: |
|
return arr |
|
pivot = arr[len(arr) // 2] |
|
left = [x for x in arr if x < pivot] |
|
middle = [x for x in arr if x == pivot] |
|
right = [x for x in arr if x > pivot] |
|
return quick_sort(left) + middle + quick_sort(right) |
|
```<|next_end|><|im_end|> |
|
```` |
|
|
|
For models in Locate-and-Change (LC) and Search-and-Replace (SR) formats, the output examples are as follows: |
|
|
|
Script for LC: |
|
|
|
````python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from eval.utils import prepare_input_for_lc |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-1.5B-LC") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"TechxGenus/CursorCore-Yi-1.5B-LC", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
sample = { |
|
"history": [], |
|
"current": { |
|
"type": "code", |
|
"lang": "python", |
|
"code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" |
|
}, |
|
"user": "Add Docstring." |
|
} |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
prepare_input_for_lc(sample), |
|
tokenize=False, |
|
chat_template="assistant-conversation", |
|
add_generation_prompt=True |
|
) |
|
|
|
inputs = tokenizer.encode(prompt, return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False) |
|
print(tokenizer.decode(outputs[0])) |
|
```` |
|
|
|
Output for LC: |
|
|
|
````txt |
|
<|im_start|>system |
|
You are a helpful programming assistant.<|im_end|> |
|
<|im_start|>current |
|
```python |
|
1 def quick_sort(array): |
|
2 if len(arr) <= 1: |
|
3 return arr |
|
4 pivot = arr[len(arr) // 2] |
|
5 left = [x for x in arr if x < pivot] |
|
6 middle = [x for x in arr if x == pivot] |
|
7 right = [x for x in arr if x > pivot] |
|
8 return quick_sort(left) + middle + quick_sort(right) |
|
```<|im_end|> |
|
<|im_start|>user |
|
Add Docstring.<|im_end|> |
|
<|im_start|>assistant |
|
<|next_start|>1,1 |
|
``` |
|
'''This function will sort an array using quick sort algorithm''' |
|
```<|next_end|> |
|
To enhance the readability and maintainability of the code, we should add a docstring to the `quick_sort` function. A docstring provides a clear description of what the function does, which is particularly useful for other developers who might use or modify this code in the future. |
|
|
|
The docstring will be added immediately after the function definition, explaining that the function uses the quick sort algorithm to sort an array. This will make the code more self-explanatory and easier to understand. |
|
|
|
Here's the plan: |
|
1. Add a docstring at the beginning of the `quick_sort` function. |
|
2. Ensure the docstring is clear and concise, describing the purpose of the function. |
|
|
|
This modification will improve the code's documentation without altering its functionality.<|im_end|> |
|
```` |
|
|
|
Script for SR: |
|
|
|
````python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from eval.utils import prepare_input_for_sr |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-1.5B-SR") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"TechxGenus/CursorCore-Yi-1.5B-SR", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
sample = { |
|
"history": [], |
|
"current": { |
|
"type": "code", |
|
"lang": "python", |
|
"code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)""" |
|
}, |
|
"user": "Add Docstring." |
|
} |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
prepare_input_for_sr(sample), |
|
tokenize=False, |
|
chat_template="assistant-conversation", |
|
add_generation_prompt=True |
|
) |
|
|
|
inputs = tokenizer.encode(prompt, return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False) |
|
print(tokenizer.decode(outputs[0])) |
|
```` |
|
|
|
Output for SR: |
|
|
|
````txt |
|
<|im_start|>system |
|
You are a helpful programming assistant.<|im_end|> |
|
<|im_start|>current |
|
```python |
|
def quick_sort(array): |
|
if len(arr) <= 1: |
|
return arr |
|
pivot = arr[len(arr) // 2] |
|
left = [x for x in arr if x < pivot] |
|
middle = [x for x in arr if x == pivot] |
|
right = [x for x in arr if x > pivot] |
|
return quick_sort(left) + middle + quick_sort(right) |
|
```<|im_end|> |
|
<|im_start|>user |
|
Add Docstring.<|im_end|> |
|
<|im_start|>assistant |
|
<|next_start|>```python |
|
def quick_sort(array): |
|
<|search_and_replace|> |
|
def quick_sort(array): |
|
""" |
|
This function implements quick sort algorithm |
|
""" |
|
```<|next_end|><|im_end|> |
|
```` |
|
|
|
### 3) Web Demo |
|
|
|
We create a web demo for CursorCore. Please visit [CursorWeb](https://github.com/TechxGenus/CursorWeb) for more details. |
|
|
|
## Future Work |
|
|
|
CursorCore is still in a very early stage, and lots of work is needed to achieve a better user experience. For example: |
|
|
|
- Repository-level editing support |
|
- Better and faster editing formats |
|
- Better user interface and presentation |
|
- ... |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@article{jiang2024cursorcore, |
|
title = {CursorCore: Assist Programming through Aligning Anything}, |
|
author = {Hao Jiang and Qi Liu and Rui Li and Shengyu Ye and Shijin Wang}, |
|
year = {2024}, |
|
journal = {arXiv preprint arXiv: 2410.07002} |
|
} |
|
``` |
|
|
|
## Contribution |
|
|
|
Contributions are welcome! If you find any bugs or have suggestions for improvements, please open an issue or submit a pull request. |
|
|