tengxiao1
TX
1f70f5a
metadata
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
  - alignment_handbook-handbook
  - generated_from_trainer
datasets:
  - princeton-nlp/llama3-ultrafeedback-armorm
model-index:
  - name: Meta-Llama-3-8B-Instruct-MI-1e-6
    results: []

Visualize in Weights & Biases

Meta-Llama-3-8B-Instruct-MI-1e-6

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the princeton-nlp/llama3-ultrafeedback-armorm dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1743
  • Rewards/chosen: -0.4630
  • Rewards/rejected: -0.6776
  • Rewards/accuracies: 0.7683
  • Rewards/margins: 0.2146
  • Logps/rejected: -0.6776
  • Logps/chosen: -0.4630
  • Logits/rejected: 0.0554
  • Logits/chosen: 0.0781

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
1.1796 0.8550 400 1.1743 -0.4630 -0.6776 0.7683 0.2146 -0.6776 -0.4630 0.0554 0.0781

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1