super resolution use python
#8
by
Vladislav-ml
- opened
pipeline = DiffusionPipeline.from_pretrained("TTPlanet/TTPLanet_SDXL_Controlnet_Tile_Realistic")```
The proposed diffuser design doesn't work for me.
Maybe there is an example of using an approach in pure python, like:
from diffusers import ControlNetModel, DiffusionPipeline
import torch
controlnet = ControlNetModel.from_pretrained(
"ValouF-pimento/ControlNet_SDXL_tile_upscale",
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
)
pipe = DiffusionPipeline.from_pretrained(
'RunDiffusion/Juggernaut-X-v10',
custom_pipeline="stable_diffusion_controlnet_img2img",
controlnet=controlnet,
requires_safety_checker=False,
safety_checker=None
).to('cuda')
condition_image = resize_for_condition_image(Image.open('test.png'), 1024)
image = pipe(
prompt="hires, a topless man",
negative_prompt="blur, lowres, bad anatomy, bad hands, cropped, worst quality",
image=condition_image,
controlnet_conditioning_image=condition_image,
width=512,
height=512,
strength=0.25,
num_inference_steps=32,
).images[0]
image.save('1.jpg')