File size: 9,735 Bytes
1dac3fc
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae5806
 
 
 
 
 
 
 
 
 
 
 
1dac3fc
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae5806
1dac3fc
 
1ae5806
1dac3fc
 
1ae5806
1dac3fc
 
1ae5806
1dac3fc
 
 
a27d9b9
 
 
 
 
 
 
 
1dac3fc
 
 
 
 
 
 
 
a27d9b9
 
1dac3fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae5806
 
 
1dac3fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae5806
1dac3fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60acc82
1dac3fc
 
 
 
 
 
 
 
 
 
 
 
 
 
a27d9b9
1dac3fc
 
1ae5806
 
 
 
 
 
1dac3fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: firqaaa/indo-sentence-bert-base
metrics:
- accuracy
- precision
- recall
- f1
widget:
- text: halaman 97 - 128 tidak ada , diulang halaman 65 - 96 , pembelian hari minggu
    tanggal 24 desember sore sekitar jam 4 pembayaran menggunakan kartu atm bri bersamaan
    dengan buku the puppeteer dan sirkus pohon
- text: liverpool sukses di kandang tottenham
- text: hai angga , untuk penerbitan tiket reschedule diharuskan melakukan pembayaran
    dulu ya .
- text: sedih kalau umat diprovokasi supaya saling membenci .
- text: berada di lokasi strategis jalan merdeka , berseberangan agak ke samping bandung
    indah plaza , tapat sebelah kanan jalan sebelum traffic light , parkir mobil cukup
    luas . saus bumbu dan lain-lain disediakan cukup lengkap di lantai bawah . di
    lantai atas suasana agak sepi . bakso cukup enak dan terjangkau harga nya tetapi
    kuah relatif kurang dan porsi tidak terlalu besar
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with firqaaa/indo-sentence-bert-base
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.7171717171717171
      name: Accuracy
    - type: precision
      value: 0.7171717171717171
      name: Precision
    - type: recall
      value: 0.7171717171717171
      name: Recall
    - type: f1
      value: 0.7171717171717171
      name: F1
---

# SetFit with firqaaa/indo-sentence-bert-base for indonlu/smsa dataset

## Author

**Kelompok 3 :**
- Muhammad Guntur Arfianto (20/459272/PA/19933)
- Putri Iqlima Miftahuddini (23/531392/NUGM/01467)
- Alan Kurniawan (23/531301/NUGM/01382)

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

The dataset that was used for fine-tuning this model is [indonlu](https://huggingface.co/datasets/indonlp/indonlu), specifically its subset, SmSa dataset.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2     | <ul><li>'nasi campur terkenal di bandung , info nya nasi campur pertama di bandung . mengandung b2 . rasa standar nasi campur . ada babi merah , babi panggang , sate babi manis , bakso goreng , jerohan manis . layanan tidak ramah , maklum masih generasi tua yang beraksi . lokasi makan lumayan bersih tapi tidak berat'</li><li>'saya di cgv marvel city sby mau verifikasi sms redam , tapi di informasi telkomsel trobel , menyebalkan !'</li><li>'indonesia itu tipe yang kalau sudah down pasti susah bangkit lagi'</li></ul> |
| 1     | <ul><li>'biru ada 4 , hijau ada 4 , merah ada 3 , kuning ada 3'</li><li>'baik terima kasih banyak'</li><li>'hai , ya , silakan kamu dapat mencoba lakukan pembayaran pdam di bukalapak .'</li></ul>                                                                                                                                                                                                                                                                                                                                      |
| 0     | <ul><li>'nyaman banget kalau lagi nongkrong kenyang di warung upnormal . mulai dari pilihan menu nya yang serius banget digarap , dari pelayan2 nya yang kece , sampai ke interior nya yang super . rekomendasi banget deh kalau mau mengerjakan tugas , arisan , ulang tahun , reunian di sini .'</li><li>'conggo gallrely cafe di bandung utara . cafe nya sih okok saja . yang menarik adalah produksi meja dengan kayu-kayu yang panjang dan tebal khusus untuk meja makan .'</li><li>'terima kasih mas'</li></ul>                   |

## Evaluation

### Metrics
| Label   | Accuracy | Precision | Recall | F1     |
|:--------|:---------|:----------|:-------|:-------|
| **all** | 0.7172   | 0.7172    | 0.7172 | 0.7172 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("TRUEnder/setfit-indosentencebert-indonlusmsa-8-shot")
# Run inference
preds = model("liverpool sukses di kandang tottenham")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 8                     |
| 1     | 8                     |
| 2     | 8                     |

### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (6, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results (Epoch-to-epoch)
| Epoch   | Step   | Training Loss | Validation Loss |
|:-------:|:------:|:-------------:|:---------------:|
| 1.0     | 24     | 0.0498        | 0.2293          |
| 2.0     | 48     | 0.0032        | 0.2033          |
| 3.0     | 72     | 0.0014        | 0.2021          |
| **4.0** | **96** | **0.001**     | **0.2009**      |
| 5.0     | 120    | 0.0009        | 0.2016          |
| 6.0     | 144    | 0.0008        | 0.2016          |

* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->