from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "/nlp_group/panleiyu/continuous_pretraining/tibetan-qwen2.5-0.5B"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "བོད་ཀྱི་ཆོས་ལུགས་རིག་གནས་ནི་གང་འདྲ་ཞིག་ཡིན་ནམ།"
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
print(text)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    repetition_penalty=1.2,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
Downloads last month
5
Safetensors
Model size
654M params
Tensor type
BF16
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for TJUNLP/tibetan-qwen2.5-0.5B

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(47)
this model