YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
iSEEEK
A universal approach for integrating super large-scale single-cell transcriptomes by exploring gene rankings
An simple pipeline for single-cell analysis
import torch
import gzip
import re
from tqdm import tqdm
import numpy as np
import scanpy as sc
from torch.utils.data import DataLoader, Dataset
from transformers import PreTrainedTokenizerFast, BertForMaskedLM
class LineDataset(Dataset):
def __init__(self, lines):
self.lines = lines
self.regex = re.compile(r'\-|\.')
def __getitem__(self, i):
return self.regex.sub('_', self.lines[i])
def __len__(self):
return len(self.lines)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.set_num_threads(2)
tokenizer = PreTrainedTokenizerFast.from_pretrained("TJMUCH/transcriptome-iseeek")
model = BertForMaskedLM.from_pretrained("TJMUCH/transcriptome-iseeek").bert
model = model.to(device)
model.eval()
## Data desposited in https://huggingface.co/TJMUCH/transcriptome-iseeek/tree/main
lines = [s.strip().decode() for s in gzip.open("pbmc_ranking.txt.gz")]
labels = [s.strip().decode() for s in gzip.open("pbmc_label.txt.gz")]
labels = np.asarray(labels)
ds = LineDataset(lines)
dl = DataLoader(ds, batch_size=80)
features = []
for a in tqdm(dl, total=len(dl)):
batch = tokenizer(a, max_length=128, truncation=True,
padding=True, return_tensors="pt")
for k, v in batch.items():
batch[k] = v.to(device)
with torch.no_grad():
out = model(**batch)
f = out.last_hidden_state[:,0,:]
features.extend(f.tolist())
features = np.stack(features)
adata = sc.AnnData(features)
adata.obs['celltype'] = labels
adata.obs.celltype = adata.obs.celltype.astype("category")
sc.pp.neighbors(adata, use_rep='X')
sc.tl.umap(adata)
sc.tl.leiden(adata)
sc.pl.umap(adata, color=['celltype','leiden'],save= "UMAP")
Extract token representations
cell_counts = len(lines)
x = np.zeros((cell_counts, len(tokenizer)), dtype=np.float16)
for a in tqdm(dl, total=len(dl)):
batch = tokenizer(a, max_length=128, truncation=True,
padding=True, return_tensors="pt")
for k, v in batch.items():
batch[k] = v.to(device)
with torch.no_grad():
out = model(**batch)
eos_idxs = batch.attention_mask.sum(dim=1) - 1
f = out.last_hidden_state
batch_size = f.shape[0]
input_ids = batch.input_ids
for i in range(batch_size):
##genes = tokenizer.batch_decode(input_ids[i])
token_norms = [f[i][j].norm().item() for j in range(1, eos_idxs[i])]
idxs = input_ids[i].tolist()[1:eos_idxs[i]]
x[counter, idxs] = token_norms
counter = counter + 1
- Downloads last month
- 20