VLM2Vec-LLaVa-Next / README.md
wenhu's picture
Update README.md
90f63c1 verified
metadata
license: apache-2.0
datasets:
  - TIGER-Lab/MMEB-train
language:
  - en
base_model:
  - llava-hf/llava-v1.6-mistral-7b-hf
library_name: transformers

A new checkpoint trained using llava-v1.6-mistral-7b-hf with an enhanced training setup (LoRA tuning, batch size of 2048, maximum sub-dataset size of 100k). This model has shown significantly improved performance on MMEB & Flickr30K compared to the previous Phi-3.5-based model.

This repo contains the code and data for VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks. In this paper, we focus on building a unified multimodal embedding model suitable for a wide range of tasks. Our approach is based on transforming an existing, well-trained Vision-Language Model (VLM) into an embedding model.

Github

Data

Our model is being trained on MMEB-train and evaluated on MMEB-eval with contrastive learning. We only use in-batch negatives for training.

Experimental Results

VLM2Vec-LlaVa-Next could outperform the baselines and other version of VLM2Vec by a large margin.

image/png

How to use VLM2Vec-LlaVa-Next

(More details please refer to our Github repo, here is just a simple demo.)

First you can clone our github

git clone https://github.com/TIGER-AI-Lab/VLM2Vec.git
pip -r requirements.txt
from src.model import MMEBModel
from src.arguments import ModelArguments
from src.utils import load_processor

import torch
from transformers import HfArgumentParser, AutoProcessor
from PIL import Image
import numpy as np


model_args = ModelArguments(
    model_name='TIGER-Lab/VLM2Vec-LLaVa-Next',
    pooling='last',
    normalize=True,
    model_backbone='llava_next')

processor = load_processor(model_args)

model = MMEBModel.load(model_args)
model.eval()
model = model.to('cuda', dtype=torch.bfloat16)

# Image + Text -> Text
inputs = processor(text='<image> Represent the given image with the following question: What is in the image',
                   images=Image.open('figures/example.jpg'),
                   return_tensors="pt")
inputs = {key: value.to('cuda') for key, value in inputs.items()}
qry_output = model(qry=inputs)["qry_reps"]

string = 'A cat and a dog'
inputs = processor(text=string,
                   images=None,
                   return_tensors="pt")
inputs = {key: value.to('cuda') for key, value in inputs.items()}
tgt_output = model(tgt=inputs)["tgt_reps"]
print(string, '=', model.compute_similarity(qry_output, tgt_output))
## A cat and a dog = tensor([[0.4414]], device='cuda:0', dtype=torch.bfloat16)

string = 'A cat and a tiger'
inputs = processor(text=string,
                   images=None,
                   return_tensors="pt")
inputs = {key: value.to('cuda') for key, value in inputs.items()}
tgt_output = model(tgt=inputs)["tgt_reps"]
print(string, '=', model.compute_similarity(qry_output, tgt_output))
## A cat and a tiger = tensor([[0.3555]], device='cuda:0', dtype=torch.bfloat16)

Citation

@article{jiang2024vlm2vec,
  title={VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks},
  author={Jiang, Ziyan and Meng, Rui and Yang, Xinyi and Yavuz, Semih and Zhou, Yingbo and Chen, Wenhu},
  journal={arXiv preprint arXiv:2410.05160},
  year={2024}
}