CogVLM2
π Wechat Β· π‘Online Demo Β· πGithub Page
πExperience the larger-scale CogVLM model on the ZhipuAI Open Platform.
Model introduction
We launch a new generation of CogVLM2 series of models and open source two models built with Meta-Llama-3-8B-Instruct. Compared with the previous generation of CogVLM open source models, the CogVLM2 series of open source models have the following improvements:
- Significant improvements in many benchmarks such as
TextVQA
,DocVQA
. - Support 8K content length.
- Support image resolution up to 1344 * 1344.
- Provide an open source model version that supports both Chinese and English.
CogVlM2 Int4 model requires 16G GPU memory and Must be run on Linux with Nvidia GPU.
Model name | cogvlm2-llama3-chinese-chat-19B-int4 | cogvlm2-llama3-chinese-chat-19B |
---|---|---|
GPU Memory Required | 16G | 42G |
System Required | Linux (With Nvidia GPU) | Linux (With Nvidia GPU) |
Benchmark
Our open source models have achieved good results in many lists compared to the previous generation of CogVLM open source models. Its excellent performance can compete with some non-open source models, as shown in the table below:
Model | Open Source | LLM Size | TextVQA | DocVQA | ChartQA | OCRbench | MMMU | MMVet | MMBench |
---|---|---|---|---|---|---|---|---|---|
CogVLM1.1 | β | 7B | 69.7 | - | 68.3 | 590 | 37.3 | 52.0 | 65.8 |
LLaVA-1.5 | β | 13B | 61.3 | - | - | 337 | 37.0 | 35.4 | 67.7 |
Mini-Gemini | β | 34B | 74.1 | - | - | - | 48.0 | 59.3 | 80.6 |
LLaVA-NeXT-LLaMA3 | β | 8B | - | 78.2 | 69.5 | - | 41.7 | - | 72.1 |
LLaVA-NeXT-110B | β | 110B | - | 85.7 | 79.7 | - | 49.1 | - | 80.5 |
InternVL-1.5 | β | 20B | 80.6 | 90.9 | 83.8 | 720 | 46.8 | 55.4 | 82.3 |
QwenVL-Plus | β | - | 78.9 | 91.4 | 78.1 | 726 | 51.4 | 55.7 | 67.0 |
Claude3-Opus | β | - | - | 89.3 | 80.8 | 694 | 59.4 | 51.7 | 63.3 |
Gemini Pro 1.5 | β | - | 73.5 | 86.5 | 81.3 | - | 58.5 | - | - |
GPT-4V | β | - | 78.0 | 88.4 | 78.5 | 656 | 56.8 | 67.7 | 75.0 |
CogVLM2-LLaMA3 (Ours) | β | 8B | 84.2 | 92.3 | 81.0 | 756 | 44.3 | 60.4 | 80.5 |
CogVLM2-LLaMA3-Chinese (Ours) | β | 8B | 85.0 | 88.4 | 74.7 | 780 | 42.8 | 60.5 | 78.9 |
All reviews were obtained without using any external OCR tools ("pixel only").
Quick Start
here is a simple example of how to use the model to chat with the CogVLM2 model. For More use case. Find in our github
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_PATH = "THUDM/cogvlm2-llama3-chinese-chat-19B-int4"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[
0] >= 8 else torch.float16
tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATH,
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True,
low_cpu_mem_usage=True,
).eval()
text_only_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {} ASSISTANT:"
while True:
image_path = input("image path >>>>> ")
if image_path == '':
print('You did not enter image path, the following will be a plain text conversation.')
image = None
text_only_first_query = True
else:
image = Image.open(image_path).convert('RGB')
history = []
while True:
query = input("Human:")
if query == "clear":
break
if image is None:
if text_only_first_query:
query = text_only_template.format(query)
text_only_first_query = False
else:
old_prompt = ''
for _, (old_query, response) in enumerate(history):
old_prompt += old_query + " " + response + "\n"
query = old_prompt + "USER: {} ASSISTANT:".format(query)
if image is None:
input_by_model = model.build_conversation_input_ids(
tokenizer,
query=query,
history=history,
template_version='chat'
)
else:
input_by_model = model.build_conversation_input_ids(
tokenizer,
query=query,
history=history,
images=[image],
template_version='chat'
)
inputs = {
'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE),
'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE),
'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE),
'images': [[input_by_model['images'][0].to(DEVICE).to(TORCH_TYPE)]] if image is not None else None,
}
gen_kwargs = {
"max_new_tokens": 2048,
"pad_token_id": 128002,
}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
response = tokenizer.decode(outputs[0])
response = response.split("<|end_of_text|>")[0]
print("\nCogVLM2:", response)
history.append((query, response))
License
This model is released under the CogVLM2 LICENSE. For models built with Meta Llama 3, please also adhere to the LLAMA3_LICENSE.
Citation
If you find our work helpful, please consider citing the following papers
@misc{wang2023cogvlm,
title={CogVLM: Visual Expert for Pretrained Language Models},
author={Weihan Wang and Qingsong Lv and Wenmeng Yu and Wenyi Hong and Ji Qi and Yan Wang and Junhui Ji and Zhuoyi Yang and Lei Zhao and Xixuan Song and Jiazheng Xu and Bin Xu and Juanzi Li and Yuxiao Dong and Ming Ding and Jie Tang},
year={2023},
eprint={2311.03079},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 49