metadata
language:
- en
- zh
library_name: transformers
tags:
- Long Context
- chatglm
- llama
datasets:
- THUDM/LongWriter-6k
LongWriter-glm4-9b
🤗 [LongWriter Dataset] • 💻 [Github Repo] • 📃 [LongWriter Paper]
LongWriter-glm4-9b is trained based on glm-4-9b-chat-1m, and is capable of generating 10,000+ words at once.
A simple demo for deployment of the model:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-glm4-9b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("THUDM/LongWriter-glm4-9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
model = model.eval()
query = "Write a 10000-word China travel guide"
prompt = f"[INST]{query}[/INST]"
input = tokenizer(prompt, truncation=False, return_tensors="pt").to(device)
context_length = input.input_ids.shape[-1]
output = model.generate(
**input,
max_new_tokens=32768,
num_beams=1,
do_sample=True,
temperature=0.5,
)[0]
response = tokenizer.decode(output[context_length:], skip_special_tokens=True)
print(response)
License: glm-4-9b License
Citation
If you find our work useful, please consider citing LongWriter: