NRJ-DEBUG / mlm.py
TCMVince's picture
commit files to HF hub
2b5b2f3
raw
history blame
16.1 kB
from math import sqrt,log
import sys
import torch
import torch.nn as nn
from torch.nn.functional import softmax,relu,linear, gelu
from common import PositionalEncoding
from hopfield import HopfieldLayer, HopfieldMHA, HopfieldReLU, HopfieldSoftmax
from configuration_energy import BertEnergyConfig
from torch.cuda.amp import autocast
import yaml
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import PreTrainedModel, PretrainedConfig
from transformers.modeling_outputs import MaskedLMOutput, BaseModelOutput
ACT2FN={'relu': relu, 'gelu': gelu, 'softmax': softmax}
class BertModel(PreTrainedModel):
""" Backbone of standard BERT model
outputs : last hidden state, history"""
config_class = BertEnergyConfig
def __init__(self, config, add_pooling_layer=True, pad_idx=None, **kwargs):
super().__init__(config)
self.Emb_in = nn.Embedding(config.vocabulary_size, config.embedding_dim, padding_idx=pad_idx)
self.posn = PositionalEncoding(config.embedding_dim, max_len=config.block_size,dropout=config.dropout) if config.positional else None
if config.share_layers: # ALBERT config
self.embedding_hidden_in = nn.Linear(config.embedding_dim, config.forward_memories) if config.share_layers else None # Albert uses two matrices instead of one for embeddings see 3.1 in Albert paper
# Albert normalise and penalise embeddings
self.embed_norm = nn.LayerNorm(config.embedding_dim, eps=config.layer_norm)
self.embed_dropout = nn.Dropout(config.dropout)
self.num_layers = config.num_layers
self.share_layers = config.share_layers
if config.share_layers:
layer = nn.TransformerEncoderLayer(config.forward_memories,
config.num_heads,
activation=config.activation,
dim_feedforward=config.forward_memories*4,
dropout=config.dropout,
layer_norm_eps=config.layer_norm,
batch_first=True,
norm_first=True,
)
self.layers = nn.ModuleList([layer])
else:
self.layers = nn.ModuleList([nn.TransformerEncoderLayer(config.embedding_dim,
config.num_heads,
dim_feedforward=config.forward_memories*4,
dropout=config.dropout,
layer_norm_eps=config.layer_norm,
batch_first=True,
norm_first=True,
) for _ in range(config.num_layers)])
def forward(self,input_ids, attention_mask=None, **kwargs):
""" Warning : expect attention mask with 0 pad tokens -> mismatch Pytorch/HF tokenizer"""
xbatch = self.Emb_in(input_ids)
if self.posn:
X = xbatch + self.posn(xbatch)
else:
X = xbatch
if self.share_layers:
X = self.embed_norm(X)
X = self.embed_dropout(X)
X = self.embedding_hidden_in(X)
history = None if self.training else [X]
# WARNING
attention_mask = ~attention_mask.bool() # Mismatch between HF tokenizer and Torch attention mask https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html#torch.nn.Transformer
for i in range(self.num_layers):
if self.share_layers:
layer = self.layers[0]
else:
layer = self.layers[i]
X = layer(X, src_key_padding_mask=attention_mask)
if not self.training:
history.append(X)
# TODO add return attention
return BaseModelOutput(last_hidden_state=X,
hidden_states=history,
attentions=None)
class BertModelForMaskedLM(PreTrainedModel):
""" Bert model to be trained on the MLM task.
Based on the backbone Bert model + projection on the vocabulary with tied weight and norm
outputs: cross entropy loss / logits / hidden states
"""
config_class = BertEnergyConfig
ignore_index = -100
_tied_weights_keys = ["Emb_out.weight", "Emb_out.bias"]
def __init__(self, config, add_pooling_layer=True, pad_idx=None):
super().__init__(config)
self.config = config
self.model = BertModel(config, pad_idx=pad_idx)
self.norm = nn.LayerNorm(config.embedding_dim, eps=config.layer_norm)
self.dense = nn.Linear(config.forward_memories, config.embedding_dim)
self.activation = ACT2FN[config.activation]
"""
if config.tie_weights:
self.Emb_out = nn.Linear(config.embedding_dim, config.vocabulary_size, bias=False)
self.tie_weights()
else:
self.Emb_out = nn.Linear(config.embedding_dim, config.vocabulary_size)
self.bias = nn.Parameter(torch.zeros(config.vocabulary_size))
self.Emb_out.bias = self.bias
"""
self.Emb_out = nn.Linear(config.forward_memories, config.vocabulary_size)
self.bias = nn.Parameter(torch.zeros(config.vocabulary_size))
self.Emb_out.bias = self.bias
def get_input_embeddings(self):
return self.model.Emb_in
def set_output_embeddings(self, new_embeddings):
self.Emb_out = new_embeddings
def forward(self,input_ids, attention_mask=None, labels=None, **kwargs):
outputs = self.model(input_ids, attention_mask, **kwargs)
last_hidden_state = outputs.last_hidden_state
hidden_states = outputs.hidden_states
attentions = outputs.attentions
last_hidden_state = self.dense(last_hidden_state)
last_hidden_state = self.activation(last_hidden_state)
last_hidden_state = self.norm(last_hidden_state)
"""
if self.config.tie_weights:
logits = last_hidden_state @ self.Emb_out.weight.transpose(-1,-2)
else:
logits = self.Emb_out(last_hidden_state)
"""
logits = self.Emb_out(last_hidden_state)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocabulary_size), labels.view(-1))
return MaskedLMOutput(loss=loss,
logits=logits,
hidden_states=hidden_states,
attentions=attentions)
class BertModelForSequenceClassification(PreTrainedModel):
""" Bert model to be trained on Sequence classification tasks.
Based on the backbone Bert model + projection on the vocabulary with tied weight and norm
outputs: cross entropy loss / logits / hidden states
"""
config_class = BertEnergyConfig
ignore_index = -100
def __init__(self, config, add_pooling_layer=True, pad_idx=None,
num_labels=2, classifier_dropout=None, return_dict=True):
super().__init__(config)
self.config = config
self.num_labels = num_labels
self.classifier_dropout = classifier_dropout
self.return_dict = return_dict
self.model = BertModel(config, pad_idx=pad_idx)
self.dense = nn.Linear(config.forward_memories, config.forward_memories)
classifier_dropout = (
classifier_dropout if classifier_dropout is not None else config.dropout
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.forward_memories,num_labels)
self.norm = nn.LayerNorm(config.embedding_dim)
#self.Emb_out = nn.Linear(config.embedding_dim, config.vocabulary_size, bias=False)
#self.Emb_out.weight = self.model.Emb_in.weight # weight tying
def forward(self,input_ids, labels=None, return_dict=False, **kwargs):
outputs = self.model(input_ids, **kwargs)
last_hidden_state = self.norm(outputs.last_hidden_state)
# Code from roberta : https://github.com/huggingface/transformers/blob/v4.39.3/src/transformers/models/roberta/modeling_roberta.py#L1426
x = last_hidden_state[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
logits = self.classifier(x)
hidden_states = outputs.hidden_states
attentions = outputs.attentions
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def compute_loss(self, logits, labels):
# code from https://github.com/huggingface/transformers/blob/main/src/transformers/trainer_pt_utils.py#L494
log_probs = -nn.functional.log_softmax(logits, dim=-1)
if labels.dim() == log_probs.dim() - 1:
labels = labels.unsqueeze(-1)
padding_mask = labels.eq(self.ignore_index)
# In case the ignore_index is -100, the gather will fail, so we replace labels by 0. The padding_mask
# will ignore them in any case.
labels = torch.clamp(labels, min=0)
nll_loss = log_probs.gather(dim=-1, index=labels)
nll_loss.masked_fill_(padding_mask, 0.0)
num_active_elements = padding_mask.numel() - padding_mask.long().sum()
nll_loss = nll_loss.sum() / num_active_elements
return nll_loss
class BertEnergyModel(PreTrainedModel):
config_class = BertEnergyConfig
def __init__(self, config, add_pooling_layer=True, pad_idx=None, **kwargs):
super().__init__(config)
self.Emb_in = nn.Embedding(config.vocabulary_size, config.embedding_dim, padding_idx=pad_idx)
self.posn = PositionalEncoding(config.embedding_dim,max_len=config.block_size,dropout=config.dropout) if config.positional else None
self.num_layers = config.num_layers
self.layer = HopfieldLayer(config.embedding_dim,config.num_heads,forward_memories=config.forward_memories,forward_activation=config.activation,bias=config.bias,beta=config.beta,dropout=config.dropout)
self.alpha = config.alpha
def forward(self,input_ids, attention_mask=None, **kwargs):
xbatch = self.Emb_in(input_ids)
if self.posn:
X = xbatch + self.posn(xbatch)
else:
X = xbatch
history = None if self.training else [X]
for _ in range(self.num_layers):
#TODO add src_key pad attention mask
X = X - self.alpha * self.layer(X, src_key_padding_mask=attention_mask, is_causal=False)
if not self.training:
history.append(X)
return BaseModelOutput(last_hidden_state=X,
hidden_states=history,
attentions=None)
class BertEnergyModelForMaskedLM(PreTrainedModel):
config_class = BertEnergyConfig
ignore_index = -100
_tied_weights_keys = ["Emb_out.weight", "Emb_out.bias"]
def __init__(self, config, add_pooling_layer=True, pad_idx=None):
super().__init__(config)
self.config = config
self.model = BertEnergyModel(config, pad_idx=pad_idx)
self.norm = nn.LayerNorm(config.embedding_dim, eps=config.layer_norm)
self.dense = nn.Linear(config.embedding_dim, config.embedding_dim)
self.activation = ACT2FN[config.activation]
self.Emb_out = nn.Linear(config.embedding_dim, config.vocabulary_size)
self.bias = nn.Parameter(torch.zeros(config.vocabulary_size))
self.Emb_out.bias = self.bias
def get_input_embeddings(self):
return self.model.Emb_in
def set_output_embeddings(self, new_embeddings):
self.Emb_out = new_embeddings
def forward(self,input_ids, attention_mask=None, labels=None, **kwargs ):
outputs = self.model(input_ids , attention_mask=attention_mask)
last_hidden_state = outputs.last_hidden_state
hidden_states = outputs.hidden_states
attentions = outputs.attentions
last_hidden_state = self.dense(last_hidden_state)
last_hidden_state = gelu(last_hidden_state) #XXX
last_hidden_state = self.norm(last_hidden_state)
#logits = self.norm(last_hidden_state) @ self.Emb_out.weight.transpose(-1,-2)
if self.config.tie_weights:
logits = last_hidden_state @ self.Emb_out.weight.transpose(-1,-2)
else:
logits = self.Emb_out(last_hidden_state)
loss = None
hidden_states = hidden_states
attentions = None
#if labels is not None:
# loss = self.compute_loss(logits, labels)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocabulary_size), labels.view(-1))
return MaskedLMOutput(loss=loss,
logits=logits,
hidden_states=hidden_states,
attentions=attentions)
if __name__ == '__main__':
def grads(f, x):
""" Autograd used for the energy """
return torch.func.jacrev(f)(x)
#from test import *
x = torch.randn(1,10)
input_ids = torch.tensor([[3,12,44, 2]])
#test relu
#print('relu')
#hrelu = HopfieldReLU(10,4,bias=False)
#print(hrelu(x),hrelu.energy(x))
#print(grads(hrelu.energy,x))
#test softmax
#print('softmax')
#hsoftmax = HopfieldSoftmax(10,4,bias=None)
#print(hsoftmax(x),hsoftmax.energy(x))
#print(grads(hsoftmax.energy,x))
#test MHA
#print('mha')
#mha = HopfieldMHA(15,3)
#X = torch.randn(2,4,15)
#causal = True
#print(mha(X,is_causal=causal),mha.energy(X,is_causal=causal))
#print()
#print('=== Ref=== ')
#for x in X: #autograd breaks with higher order tensors
# print(grads(lambda y: mha.energy(y,is_causal=causal) ,x))
config = HopfieldConfig(path="../lmconfig.yaml")
print(config)
#exit()
mdl = HFHopfieldModel(config)
mdl.eval()
#print(mdl)
out = mdl(input_ids)
print(out[0].mean())
mdl.save_pretrained("test_checkpoint")
reloaded = HFHopfieldModel.from_pretrained("test_checkpoint")
out_reloaded = reloaded(input_ids)
print(out_reloaded[0].mean())
reloaded.to("cuda:0")
print(reloaded(input_ids.to("cuda:0"))[0])