commit files to HF hub
Browse files- README.md +199 -0
- config.json +29 -0
- config.yaml +60 -0
- configuration_energy.py +58 -0
- mlm.py +410 -0
- model.safetensors +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer/special_tokens_map.json +37 -0
- tokenizer/tokenizer.json +0 -0
- tokenizer/tokenizer_config.json +53 -0
- tokenizer_config.json +54 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "NRJ-350",
|
3 |
+
"activation": "softmax",
|
4 |
+
"alpha": 0.1,
|
5 |
+
"architectures": [
|
6 |
+
"BertEnergyModelForMaskedLM"
|
7 |
+
],
|
8 |
+
"auto_map": {
|
9 |
+
"AutoModel": "mlm.BertEnergyModelForMaskedLM"
|
10 |
+
},
|
11 |
+
"beta": 0.125,
|
12 |
+
"bias": true,
|
13 |
+
"block_size": 512,
|
14 |
+
"compile": false,
|
15 |
+
"dropout": 0.1,
|
16 |
+
"embedding_dim": 768,
|
17 |
+
"forward_memories": 3072,
|
18 |
+
"layer_norm": 1e-12,
|
19 |
+
"model_type": "bert_energy",
|
20 |
+
"num_heads": 12,
|
21 |
+
"num_layers": 12,
|
22 |
+
"pad_idx": null,
|
23 |
+
"positional": true,
|
24 |
+
"share_layers": false,
|
25 |
+
"tie_weights": false,
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.47.0",
|
28 |
+
"vocabulary_size": 30000
|
29 |
+
}
|
config.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
activation: softmax
|
2 |
+
adam_beta1: 0.9
|
3 |
+
adam_beta2: 0.99
|
4 |
+
adam_epsilon: 1.0e-06
|
5 |
+
alpha: 0.1
|
6 |
+
attn_implementation: null
|
7 |
+
beta: 0.125
|
8 |
+
bf16: true
|
9 |
+
block_size: 512
|
10 |
+
checkpoint_dir: mlruns/896390784617014591/892b97fa0aa6499288906c463545ae00/checkpoints
|
11 |
+
compile: false
|
12 |
+
config_path: configs/JZ/NRJ_base-wiki-original.yaml
|
13 |
+
dataloader_num_workers: 8
|
14 |
+
dataset_path: /lustre/fswork/projects/rech/oou/uqh26ve/data/pre_training/en/en_wiki/wiki_20220301-cleaned-valid001/data-bin/wiki_20220301-cleaned-valid001-BPE30K/
|
15 |
+
ddp_find_unused_parameters: false
|
16 |
+
disable_tqdm: true
|
17 |
+
do_eval: true
|
18 |
+
dropout: 0.1
|
19 |
+
embedding_dim: 768
|
20 |
+
eval_steps: 25000
|
21 |
+
evaluation_strategy: steps
|
22 |
+
forward_memories: 3072
|
23 |
+
fp16: false
|
24 |
+
gradient_accumulation_steps: 1
|
25 |
+
ignore_lines: false
|
26 |
+
layer_norm: 1.0e-12
|
27 |
+
learning_rate: 0.0007
|
28 |
+
log_on_each_node: false
|
29 |
+
logging_steps: 1000
|
30 |
+
logging_strategy: steps
|
31 |
+
lr_scheduler_kwargs: {}
|
32 |
+
lr_scheduler_type: cosine
|
33 |
+
max_steps: 500000
|
34 |
+
model_name: NRJ-V_30000K_bpe-NL12-NH12-EMB768-FFN3072
|
35 |
+
model_type: energyBERT
|
36 |
+
n_run: 51
|
37 |
+
num_heads: 12
|
38 |
+
num_layers: 12
|
39 |
+
num_params: 50638896
|
40 |
+
optimizer: adamw_torch
|
41 |
+
output_dir: null
|
42 |
+
per_device_eval_batch_size: 8
|
43 |
+
per_device_train_batch_size: 64
|
44 |
+
remove_unused_columns: false
|
45 |
+
report_to: mlflow
|
46 |
+
save_steps: 25000
|
47 |
+
save_strategy: steps
|
48 |
+
seed: 42
|
49 |
+
share_layers: false
|
50 |
+
test_file: /lustre/fswork/projects/rech/oou/uqh26ve/data/pre_training/en/en_wiki/wiki_20220301-cleaned-valid001/wikipedia.test.txt
|
51 |
+
tie_weights: false
|
52 |
+
tokenizer_path: /lustre/fswork/projects/rech/oou/uqh26ve/data/pre_training/en/en_wiki/wiki_20220301-cleaned-valid001/data-bin/wiki_20220301-cleaned-valid001-BPE30K/tokenizer
|
53 |
+
tokenizer_type: bpe
|
54 |
+
total_batch_size: 4096
|
55 |
+
training_file: /lustre/fswork/projects/rech/oou/uqh26ve/data/pre_training/en/en_wiki/wiki_20220301-cleaned-valid001/wikipedia.train.txt
|
56 |
+
valid_file: /lustre/fswork/projects/rech/oou/uqh26ve/data/pre_training/en/en_wiki/wiki_20220301-cleaned-valid001/wikipedia.valid.txt
|
57 |
+
vocabulary_size: 30000
|
58 |
+
warmup_ratio: 0.0
|
59 |
+
warmup_steps: 24000
|
60 |
+
weight_decay: 0.01
|
configuration_energy.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import sqrt,log
|
2 |
+
import sys
|
3 |
+
|
4 |
+
#sys.path.append("../energy") # Messy
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.nn.functional import softmax,relu,linear
|
9 |
+
from common import PositionalEncoding
|
10 |
+
from hopfield import HopfieldLayer, HopfieldMHA, HopfieldReLU, HopfieldSoftmax
|
11 |
+
|
12 |
+
from torch.cuda.amp import autocast
|
13 |
+
import yaml
|
14 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
15 |
+
from transformers.modeling_outputs import MaskedLMOutput, BaseModelOutput
|
16 |
+
|
17 |
+
class BertEnergyConfig(PretrainedConfig):
|
18 |
+
|
19 |
+
model_type = "bert_energy"
|
20 |
+
|
21 |
+
def __init__(self, config=None, path=None, vocabulary_size=50, num_layers=12, num_heads=12, forward_memories=2048, embedding_dim=768, activation="relu",positional=True, bias=True, tie_weights=True, alpha=1.0,
|
22 |
+
beta=1., layer_norm=1e-05, dropout=0.0, block_size=512, share_layers=False, compile=False, pad_idx=None, **kwargs):
|
23 |
+
|
24 |
+
self.vocabulary_size = vocabulary_size
|
25 |
+
self.num_layers = num_layers
|
26 |
+
self.num_heads = num_heads
|
27 |
+
self.activation = activation
|
28 |
+
self.positional = positional
|
29 |
+
self.tie_weights = tie_weights
|
30 |
+
self.bias = bias
|
31 |
+
self.forward_memories = forward_memories
|
32 |
+
self.embedding_dim = embedding_dim
|
33 |
+
self.share_layers = share_layers
|
34 |
+
self.alpha = alpha
|
35 |
+
self.beta = beta
|
36 |
+
self.layer_norm = float(layer_norm)
|
37 |
+
self.dropout = dropout
|
38 |
+
self.block_size = block_size
|
39 |
+
self.compile = compile
|
40 |
+
self.pad_idx = pad_idx
|
41 |
+
|
42 |
+
if config is not None:
|
43 |
+
for key,value in config.to_dict():
|
44 |
+
if key.lower() in self.__dict__.keys():
|
45 |
+
print(key, file=sys.stderr)
|
46 |
+
setattr(self,key.lower(),value)
|
47 |
+
|
48 |
+
elif path is not None:
|
49 |
+
if path.endswith(".yaml"):
|
50 |
+
with open(path) as istream:
|
51 |
+
config = yaml.safe_load(istream)
|
52 |
+
for key,value in config.items():
|
53 |
+
print(key)
|
54 |
+
if key.lower() in self.__dict__.keys():
|
55 |
+
setattr(self,key.lower(),value)
|
56 |
+
else:
|
57 |
+
raise NotImplementedError
|
58 |
+
super().__init__(**kwargs)
|
mlm.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import sqrt,log
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn.functional import softmax,relu,linear, gelu
|
6 |
+
from common import PositionalEncoding
|
7 |
+
from hopfield import HopfieldLayer, HopfieldMHA, HopfieldReLU, HopfieldSoftmax
|
8 |
+
from configuration_energy import BertEnergyConfig
|
9 |
+
from torch.cuda.amp import autocast
|
10 |
+
import yaml
|
11 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
12 |
+
|
13 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
14 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
15 |
+
from transformers.modeling_outputs import MaskedLMOutput, BaseModelOutput
|
16 |
+
|
17 |
+
ACT2FN={'relu': relu, 'gelu': gelu, 'softmax': softmax}
|
18 |
+
|
19 |
+
class BertModel(PreTrainedModel):
|
20 |
+
""" Backbone of standard BERT model
|
21 |
+
outputs : last hidden state, history"""
|
22 |
+
|
23 |
+
config_class = BertEnergyConfig
|
24 |
+
|
25 |
+
def __init__(self, config, add_pooling_layer=True, pad_idx=None, **kwargs):
|
26 |
+
super().__init__(config)
|
27 |
+
|
28 |
+
self.Emb_in = nn.Embedding(config.vocabulary_size, config.embedding_dim, padding_idx=pad_idx)
|
29 |
+
self.posn = PositionalEncoding(config.embedding_dim, max_len=config.block_size,dropout=config.dropout) if config.positional else None
|
30 |
+
|
31 |
+
if config.share_layers: # ALBERT config
|
32 |
+
self.embedding_hidden_in = nn.Linear(config.embedding_dim, config.forward_memories) if config.share_layers else None # Albert uses two matrices instead of one for embeddings see 3.1 in Albert paper
|
33 |
+
# Albert normalise and penalise embeddings
|
34 |
+
self.embed_norm = nn.LayerNorm(config.embedding_dim, eps=config.layer_norm)
|
35 |
+
self.embed_dropout = nn.Dropout(config.dropout)
|
36 |
+
|
37 |
+
|
38 |
+
self.num_layers = config.num_layers
|
39 |
+
self.share_layers = config.share_layers
|
40 |
+
|
41 |
+
if config.share_layers:
|
42 |
+
layer = nn.TransformerEncoderLayer(config.forward_memories,
|
43 |
+
config.num_heads,
|
44 |
+
activation=config.activation,
|
45 |
+
dim_feedforward=config.forward_memories*4,
|
46 |
+
dropout=config.dropout,
|
47 |
+
layer_norm_eps=config.layer_norm,
|
48 |
+
batch_first=True,
|
49 |
+
norm_first=True,
|
50 |
+
)
|
51 |
+
self.layers = nn.ModuleList([layer])
|
52 |
+
|
53 |
+
else:
|
54 |
+
self.layers = nn.ModuleList([nn.TransformerEncoderLayer(config.embedding_dim,
|
55 |
+
config.num_heads,
|
56 |
+
dim_feedforward=config.forward_memories*4,
|
57 |
+
dropout=config.dropout,
|
58 |
+
layer_norm_eps=config.layer_norm,
|
59 |
+
batch_first=True,
|
60 |
+
norm_first=True,
|
61 |
+
) for _ in range(config.num_layers)])
|
62 |
+
|
63 |
+
def forward(self,input_ids, attention_mask=None, **kwargs):
|
64 |
+
""" Warning : expect attention mask with 0 pad tokens -> mismatch Pytorch/HF tokenizer"""
|
65 |
+
|
66 |
+
xbatch = self.Emb_in(input_ids)
|
67 |
+
|
68 |
+
if self.posn:
|
69 |
+
X = xbatch + self.posn(xbatch)
|
70 |
+
else:
|
71 |
+
X = xbatch
|
72 |
+
|
73 |
+
|
74 |
+
if self.share_layers:
|
75 |
+
X = self.embed_norm(X)
|
76 |
+
X = self.embed_dropout(X)
|
77 |
+
X = self.embedding_hidden_in(X)
|
78 |
+
|
79 |
+
history = None if self.training else [X]
|
80 |
+
|
81 |
+
# WARNING
|
82 |
+
attention_mask = ~attention_mask.bool() # Mismatch between HF tokenizer and Torch attention mask https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html#torch.nn.Transformer
|
83 |
+
for i in range(self.num_layers):
|
84 |
+
if self.share_layers:
|
85 |
+
layer = self.layers[0]
|
86 |
+
else:
|
87 |
+
layer = self.layers[i]
|
88 |
+
X = layer(X, src_key_padding_mask=attention_mask)
|
89 |
+
|
90 |
+
if not self.training:
|
91 |
+
history.append(X)
|
92 |
+
|
93 |
+
# TODO add return attention
|
94 |
+
return BaseModelOutput(last_hidden_state=X,
|
95 |
+
hidden_states=history,
|
96 |
+
attentions=None)
|
97 |
+
|
98 |
+
class BertModelForMaskedLM(PreTrainedModel):
|
99 |
+
""" Bert model to be trained on the MLM task.
|
100 |
+
Based on the backbone Bert model + projection on the vocabulary with tied weight and norm
|
101 |
+
outputs: cross entropy loss / logits / hidden states
|
102 |
+
"""
|
103 |
+
|
104 |
+
config_class = BertEnergyConfig
|
105 |
+
ignore_index = -100
|
106 |
+
|
107 |
+
_tied_weights_keys = ["Emb_out.weight", "Emb_out.bias"]
|
108 |
+
|
109 |
+
def __init__(self, config, add_pooling_layer=True, pad_idx=None):
|
110 |
+
super().__init__(config)
|
111 |
+
self.config = config
|
112 |
+
|
113 |
+
self.model = BertModel(config, pad_idx=pad_idx)
|
114 |
+
|
115 |
+
self.norm = nn.LayerNorm(config.embedding_dim, eps=config.layer_norm)
|
116 |
+
self.dense = nn.Linear(config.forward_memories, config.embedding_dim)
|
117 |
+
self.activation = ACT2FN[config.activation]
|
118 |
+
"""
|
119 |
+
if config.tie_weights:
|
120 |
+
self.Emb_out = nn.Linear(config.embedding_dim, config.vocabulary_size, bias=False)
|
121 |
+
self.tie_weights()
|
122 |
+
else:
|
123 |
+
self.Emb_out = nn.Linear(config.embedding_dim, config.vocabulary_size)
|
124 |
+
self.bias = nn.Parameter(torch.zeros(config.vocabulary_size))
|
125 |
+
self.Emb_out.bias = self.bias
|
126 |
+
"""
|
127 |
+
self.Emb_out = nn.Linear(config.forward_memories, config.vocabulary_size)
|
128 |
+
self.bias = nn.Parameter(torch.zeros(config.vocabulary_size))
|
129 |
+
self.Emb_out.bias = self.bias
|
130 |
+
|
131 |
+
def get_input_embeddings(self):
|
132 |
+
return self.model.Emb_in
|
133 |
+
|
134 |
+
def set_output_embeddings(self, new_embeddings):
|
135 |
+
self.Emb_out = new_embeddings
|
136 |
+
|
137 |
+
def forward(self,input_ids, attention_mask=None, labels=None, **kwargs):
|
138 |
+
|
139 |
+
outputs = self.model(input_ids, attention_mask, **kwargs)
|
140 |
+
last_hidden_state = outputs.last_hidden_state
|
141 |
+
hidden_states = outputs.hidden_states
|
142 |
+
attentions = outputs.attentions
|
143 |
+
|
144 |
+
last_hidden_state = self.dense(last_hidden_state)
|
145 |
+
last_hidden_state = self.activation(last_hidden_state)
|
146 |
+
last_hidden_state = self.norm(last_hidden_state)
|
147 |
+
|
148 |
+
"""
|
149 |
+
if self.config.tie_weights:
|
150 |
+
logits = last_hidden_state @ self.Emb_out.weight.transpose(-1,-2)
|
151 |
+
else:
|
152 |
+
logits = self.Emb_out(last_hidden_state)
|
153 |
+
"""
|
154 |
+
|
155 |
+
logits = self.Emb_out(last_hidden_state)
|
156 |
+
|
157 |
+
loss = None
|
158 |
+
|
159 |
+
if labels is not None:
|
160 |
+
loss_fct = CrossEntropyLoss()
|
161 |
+
loss = loss_fct(logits.view(-1, self.config.vocabulary_size), labels.view(-1))
|
162 |
+
|
163 |
+
return MaskedLMOutput(loss=loss,
|
164 |
+
logits=logits,
|
165 |
+
hidden_states=hidden_states,
|
166 |
+
attentions=attentions)
|
167 |
+
|
168 |
+
|
169 |
+
class BertModelForSequenceClassification(PreTrainedModel):
|
170 |
+
""" Bert model to be trained on Sequence classification tasks.
|
171 |
+
Based on the backbone Bert model + projection on the vocabulary with tied weight and norm
|
172 |
+
outputs: cross entropy loss / logits / hidden states
|
173 |
+
"""
|
174 |
+
|
175 |
+
config_class = BertEnergyConfig
|
176 |
+
ignore_index = -100
|
177 |
+
|
178 |
+
def __init__(self, config, add_pooling_layer=True, pad_idx=None,
|
179 |
+
num_labels=2, classifier_dropout=None, return_dict=True):
|
180 |
+
super().__init__(config)
|
181 |
+
self.config = config
|
182 |
+
self.num_labels = num_labels
|
183 |
+
self.classifier_dropout = classifier_dropout
|
184 |
+
self.return_dict = return_dict
|
185 |
+
|
186 |
+
self.model = BertModel(config, pad_idx=pad_idx)
|
187 |
+
self.dense = nn.Linear(config.forward_memories, config.forward_memories)
|
188 |
+
classifier_dropout = (
|
189 |
+
classifier_dropout if classifier_dropout is not None else config.dropout
|
190 |
+
)
|
191 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
192 |
+
self.classifier = nn.Linear(config.forward_memories,num_labels)
|
193 |
+
self.norm = nn.LayerNorm(config.embedding_dim)
|
194 |
+
|
195 |
+
#self.Emb_out = nn.Linear(config.embedding_dim, config.vocabulary_size, bias=False)
|
196 |
+
#self.Emb_out.weight = self.model.Emb_in.weight # weight tying
|
197 |
+
|
198 |
+
def forward(self,input_ids, labels=None, return_dict=False, **kwargs):
|
199 |
+
|
200 |
+
outputs = self.model(input_ids, **kwargs)
|
201 |
+
last_hidden_state = self.norm(outputs.last_hidden_state)
|
202 |
+
# Code from roberta : https://github.com/huggingface/transformers/blob/v4.39.3/src/transformers/models/roberta/modeling_roberta.py#L1426
|
203 |
+
x = last_hidden_state[:, 0, :] # take <s> token (equiv. to [CLS])
|
204 |
+
x = self.dropout(x)
|
205 |
+
x = self.dense(x)
|
206 |
+
x = torch.tanh(x)
|
207 |
+
x = self.dropout(x)
|
208 |
+
|
209 |
+
logits = self.classifier(x)
|
210 |
+
hidden_states = outputs.hidden_states
|
211 |
+
attentions = outputs.attentions
|
212 |
+
|
213 |
+
loss = None
|
214 |
+
|
215 |
+
if labels is not None:
|
216 |
+
# move labels to correct device to enable model parallelism
|
217 |
+
labels = labels.to(logits.device)
|
218 |
+
if self.config.problem_type is None:
|
219 |
+
if self.num_labels == 1:
|
220 |
+
self.config.problem_type = "regression"
|
221 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
222 |
+
self.config.problem_type = "single_label_classification"
|
223 |
+
else:
|
224 |
+
self.config.problem_type = "multi_label_classification"
|
225 |
+
|
226 |
+
if self.config.problem_type == "regression":
|
227 |
+
loss_fct = MSELoss()
|
228 |
+
if self.num_labels == 1:
|
229 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
230 |
+
else:
|
231 |
+
loss = loss_fct(logits, labels)
|
232 |
+
elif self.config.problem_type == "single_label_classification":
|
233 |
+
loss_fct = CrossEntropyLoss()
|
234 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
235 |
+
elif self.config.problem_type == "multi_label_classification":
|
236 |
+
loss_fct = BCEWithLogitsLoss()
|
237 |
+
loss = loss_fct(logits, labels)
|
238 |
+
|
239 |
+
if not return_dict:
|
240 |
+
output = (logits,) + outputs[2:]
|
241 |
+
return ((loss,) + output) if loss is not None else output
|
242 |
+
|
243 |
+
return SequenceClassifierOutput(
|
244 |
+
loss=loss,
|
245 |
+
logits=logits,
|
246 |
+
hidden_states=outputs.hidden_states,
|
247 |
+
attentions=outputs.attentions,
|
248 |
+
)
|
249 |
+
|
250 |
+
def compute_loss(self, logits, labels):
|
251 |
+
# code from https://github.com/huggingface/transformers/blob/main/src/transformers/trainer_pt_utils.py#L494
|
252 |
+
log_probs = -nn.functional.log_softmax(logits, dim=-1)
|
253 |
+
if labels.dim() == log_probs.dim() - 1:
|
254 |
+
labels = labels.unsqueeze(-1)
|
255 |
+
|
256 |
+
padding_mask = labels.eq(self.ignore_index)
|
257 |
+
# In case the ignore_index is -100, the gather will fail, so we replace labels by 0. The padding_mask
|
258 |
+
# will ignore them in any case.
|
259 |
+
labels = torch.clamp(labels, min=0)
|
260 |
+
nll_loss = log_probs.gather(dim=-1, index=labels)
|
261 |
+
nll_loss.masked_fill_(padding_mask, 0.0)
|
262 |
+
num_active_elements = padding_mask.numel() - padding_mask.long().sum()
|
263 |
+
nll_loss = nll_loss.sum() / num_active_elements
|
264 |
+
return nll_loss
|
265 |
+
|
266 |
+
|
267 |
+
class BertEnergyModel(PreTrainedModel):
|
268 |
+
|
269 |
+
config_class = BertEnergyConfig
|
270 |
+
|
271 |
+
def __init__(self, config, add_pooling_layer=True, pad_idx=None, **kwargs):
|
272 |
+
super().__init__(config)
|
273 |
+
|
274 |
+
self.Emb_in = nn.Embedding(config.vocabulary_size, config.embedding_dim, padding_idx=pad_idx)
|
275 |
+
self.posn = PositionalEncoding(config.embedding_dim,max_len=config.block_size,dropout=config.dropout) if config.positional else None
|
276 |
+
|
277 |
+
self.num_layers = config.num_layers
|
278 |
+
self.layer = HopfieldLayer(config.embedding_dim,config.num_heads,forward_memories=config.forward_memories,forward_activation=config.activation,bias=config.bias,beta=config.beta,dropout=config.dropout)
|
279 |
+
|
280 |
+
self.alpha = config.alpha
|
281 |
+
|
282 |
+
def forward(self,input_ids, attention_mask=None, **kwargs):
|
283 |
+
|
284 |
+
xbatch = self.Emb_in(input_ids)
|
285 |
+
|
286 |
+
if self.posn:
|
287 |
+
X = xbatch + self.posn(xbatch)
|
288 |
+
else:
|
289 |
+
X = xbatch
|
290 |
+
|
291 |
+
history = None if self.training else [X]
|
292 |
+
|
293 |
+
for _ in range(self.num_layers):
|
294 |
+
#TODO add src_key pad attention mask
|
295 |
+
X = X - self.alpha * self.layer(X, src_key_padding_mask=attention_mask, is_causal=False)
|
296 |
+
if not self.training:
|
297 |
+
history.append(X)
|
298 |
+
|
299 |
+
return BaseModelOutput(last_hidden_state=X,
|
300 |
+
hidden_states=history,
|
301 |
+
attentions=None)
|
302 |
+
|
303 |
+
|
304 |
+
class BertEnergyModelForMaskedLM(PreTrainedModel):
|
305 |
+
|
306 |
+
config_class = BertEnergyConfig
|
307 |
+
ignore_index = -100
|
308 |
+
|
309 |
+
_tied_weights_keys = ["Emb_out.weight", "Emb_out.bias"]
|
310 |
+
|
311 |
+
def __init__(self, config, add_pooling_layer=True, pad_idx=None):
|
312 |
+
super().__init__(config)
|
313 |
+
self.config = config
|
314 |
+
|
315 |
+
self.model = BertEnergyModel(config, pad_idx=pad_idx)
|
316 |
+
|
317 |
+
self.norm = nn.LayerNorm(config.embedding_dim, eps=config.layer_norm)
|
318 |
+
self.dense = nn.Linear(config.embedding_dim, config.embedding_dim)
|
319 |
+
self.activation = ACT2FN[config.activation]
|
320 |
+
|
321 |
+
self.Emb_out = nn.Linear(config.embedding_dim, config.vocabulary_size)
|
322 |
+
self.bias = nn.Parameter(torch.zeros(config.vocabulary_size))
|
323 |
+
self.Emb_out.bias = self.bias
|
324 |
+
|
325 |
+
|
326 |
+
def get_input_embeddings(self):
|
327 |
+
return self.model.Emb_in
|
328 |
+
|
329 |
+
def set_output_embeddings(self, new_embeddings):
|
330 |
+
self.Emb_out = new_embeddings
|
331 |
+
|
332 |
+
def forward(self,input_ids, attention_mask=None, labels=None, **kwargs ):
|
333 |
+
|
334 |
+
outputs = self.model(input_ids , attention_mask=attention_mask)
|
335 |
+
last_hidden_state = outputs.last_hidden_state
|
336 |
+
hidden_states = outputs.hidden_states
|
337 |
+
attentions = outputs.attentions
|
338 |
+
|
339 |
+
last_hidden_state = self.dense(last_hidden_state)
|
340 |
+
last_hidden_state = gelu(last_hidden_state) #XXX
|
341 |
+
last_hidden_state = self.norm(last_hidden_state)
|
342 |
+
|
343 |
+
#logits = self.norm(last_hidden_state) @ self.Emb_out.weight.transpose(-1,-2)
|
344 |
+
if self.config.tie_weights:
|
345 |
+
logits = last_hidden_state @ self.Emb_out.weight.transpose(-1,-2)
|
346 |
+
else:
|
347 |
+
logits = self.Emb_out(last_hidden_state)
|
348 |
+
|
349 |
+
loss = None
|
350 |
+
hidden_states = hidden_states
|
351 |
+
attentions = None
|
352 |
+
|
353 |
+
#if labels is not None:
|
354 |
+
# loss = self.compute_loss(logits, labels)
|
355 |
+
if labels is not None:
|
356 |
+
loss_fct = CrossEntropyLoss()
|
357 |
+
loss = loss_fct(logits.view(-1, self.config.vocabulary_size), labels.view(-1))
|
358 |
+
|
359 |
+
return MaskedLMOutput(loss=loss,
|
360 |
+
logits=logits,
|
361 |
+
hidden_states=hidden_states,
|
362 |
+
attentions=attentions)
|
363 |
+
|
364 |
+
if __name__ == '__main__':
|
365 |
+
|
366 |
+
def grads(f, x):
|
367 |
+
""" Autograd used for the energy """
|
368 |
+
return torch.func.jacrev(f)(x)
|
369 |
+
|
370 |
+
|
371 |
+
#from test import *
|
372 |
+
x = torch.randn(1,10)
|
373 |
+
input_ids = torch.tensor([[3,12,44, 2]])
|
374 |
+
|
375 |
+
#test relu
|
376 |
+
#print('relu')
|
377 |
+
#hrelu = HopfieldReLU(10,4,bias=False)
|
378 |
+
#print(hrelu(x),hrelu.energy(x))
|
379 |
+
#print(grads(hrelu.energy,x))
|
380 |
+
|
381 |
+
#test softmax
|
382 |
+
#print('softmax')
|
383 |
+
#hsoftmax = HopfieldSoftmax(10,4,bias=None)
|
384 |
+
#print(hsoftmax(x),hsoftmax.energy(x))
|
385 |
+
#print(grads(hsoftmax.energy,x))
|
386 |
+
|
387 |
+
#test MHA
|
388 |
+
#print('mha')
|
389 |
+
#mha = HopfieldMHA(15,3)
|
390 |
+
#X = torch.randn(2,4,15)
|
391 |
+
#causal = True
|
392 |
+
#print(mha(X,is_causal=causal),mha.energy(X,is_causal=causal))
|
393 |
+
#print()
|
394 |
+
#print('=== Ref=== ')
|
395 |
+
#for x in X: #autograd breaks with higher order tensors
|
396 |
+
# print(grads(lambda y: mha.energy(y,is_causal=causal) ,x))
|
397 |
+
config = HopfieldConfig(path="../lmconfig.yaml")
|
398 |
+
print(config)
|
399 |
+
#exit()
|
400 |
+
mdl = HFHopfieldModel(config)
|
401 |
+
mdl.eval()
|
402 |
+
#print(mdl)
|
403 |
+
out = mdl(input_ids)
|
404 |
+
print(out[0].mean())
|
405 |
+
mdl.save_pretrained("test_checkpoint")
|
406 |
+
reloaded = HFHopfieldModel.from_pretrained("test_checkpoint")
|
407 |
+
out_reloaded = reloaded(input_ids)
|
408 |
+
print(out_reloaded[0].mean())
|
409 |
+
reloaded.to("cuda:0")
|
410 |
+
print(reloaded(input_ids.to("cuda:0"))[0])
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84b9d586b1e5d0e9662d1ca8cacd558a323da7d6c30ac29efd6b2678ae51c923
|
3 |
+
size 202676920
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "[SEP]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"mask_token": {
|
17 |
+
"content": "[MASK]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"pad_token": {
|
24 |
+
"content": "[PAD]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "[SEP]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"mask_token": {
|
17 |
+
"content": "[MASK]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"pad_token": {
|
24 |
+
"content": "[PAD]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[UNK]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[PAD]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"eos_token": "[SEP]",
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 512,
|
49 |
+
"model_max_length": 1000000000000000019884624838656,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
52 |
+
"unk_token": "[UNK]"
|
53 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[UNK]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[PAD]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"eos_token": "[SEP]",
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
53 |
+
"unk_token": "[UNK]"
|
54 |
+
}
|