TCMVince commited on
Commit
2b5b2f3
·
1 Parent(s): f45272a

commit files to HF hub

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "NRJ-350",
3
+ "activation": "softmax",
4
+ "alpha": 0.1,
5
+ "architectures": [
6
+ "BertEnergyModelForMaskedLM"
7
+ ],
8
+ "auto_map": {
9
+ "AutoModel": "mlm.BertEnergyModelForMaskedLM"
10
+ },
11
+ "beta": 0.125,
12
+ "bias": true,
13
+ "block_size": 512,
14
+ "compile": false,
15
+ "dropout": 0.1,
16
+ "embedding_dim": 768,
17
+ "forward_memories": 3072,
18
+ "layer_norm": 1e-12,
19
+ "model_type": "bert_energy",
20
+ "num_heads": 12,
21
+ "num_layers": 12,
22
+ "pad_idx": null,
23
+ "positional": true,
24
+ "share_layers": false,
25
+ "tie_weights": false,
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.47.0",
28
+ "vocabulary_size": 30000
29
+ }
config.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ activation: softmax
2
+ adam_beta1: 0.9
3
+ adam_beta2: 0.99
4
+ adam_epsilon: 1.0e-06
5
+ alpha: 0.1
6
+ attn_implementation: null
7
+ beta: 0.125
8
+ bf16: true
9
+ block_size: 512
10
+ checkpoint_dir: mlruns/896390784617014591/892b97fa0aa6499288906c463545ae00/checkpoints
11
+ compile: false
12
+ config_path: configs/JZ/NRJ_base-wiki-original.yaml
13
+ dataloader_num_workers: 8
14
+ dataset_path: /lustre/fswork/projects/rech/oou/uqh26ve/data/pre_training/en/en_wiki/wiki_20220301-cleaned-valid001/data-bin/wiki_20220301-cleaned-valid001-BPE30K/
15
+ ddp_find_unused_parameters: false
16
+ disable_tqdm: true
17
+ do_eval: true
18
+ dropout: 0.1
19
+ embedding_dim: 768
20
+ eval_steps: 25000
21
+ evaluation_strategy: steps
22
+ forward_memories: 3072
23
+ fp16: false
24
+ gradient_accumulation_steps: 1
25
+ ignore_lines: false
26
+ layer_norm: 1.0e-12
27
+ learning_rate: 0.0007
28
+ log_on_each_node: false
29
+ logging_steps: 1000
30
+ logging_strategy: steps
31
+ lr_scheduler_kwargs: {}
32
+ lr_scheduler_type: cosine
33
+ max_steps: 500000
34
+ model_name: NRJ-V_30000K_bpe-NL12-NH12-EMB768-FFN3072
35
+ model_type: energyBERT
36
+ n_run: 51
37
+ num_heads: 12
38
+ num_layers: 12
39
+ num_params: 50638896
40
+ optimizer: adamw_torch
41
+ output_dir: null
42
+ per_device_eval_batch_size: 8
43
+ per_device_train_batch_size: 64
44
+ remove_unused_columns: false
45
+ report_to: mlflow
46
+ save_steps: 25000
47
+ save_strategy: steps
48
+ seed: 42
49
+ share_layers: false
50
+ test_file: /lustre/fswork/projects/rech/oou/uqh26ve/data/pre_training/en/en_wiki/wiki_20220301-cleaned-valid001/wikipedia.test.txt
51
+ tie_weights: false
52
+ tokenizer_path: /lustre/fswork/projects/rech/oou/uqh26ve/data/pre_training/en/en_wiki/wiki_20220301-cleaned-valid001/data-bin/wiki_20220301-cleaned-valid001-BPE30K/tokenizer
53
+ tokenizer_type: bpe
54
+ total_batch_size: 4096
55
+ training_file: /lustre/fswork/projects/rech/oou/uqh26ve/data/pre_training/en/en_wiki/wiki_20220301-cleaned-valid001/wikipedia.train.txt
56
+ valid_file: /lustre/fswork/projects/rech/oou/uqh26ve/data/pre_training/en/en_wiki/wiki_20220301-cleaned-valid001/wikipedia.valid.txt
57
+ vocabulary_size: 30000
58
+ warmup_ratio: 0.0
59
+ warmup_steps: 24000
60
+ weight_decay: 0.01
configuration_energy.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import sqrt,log
2
+ import sys
3
+
4
+ #sys.path.append("../energy") # Messy
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ from torch.nn.functional import softmax,relu,linear
9
+ from common import PositionalEncoding
10
+ from hopfield import HopfieldLayer, HopfieldMHA, HopfieldReLU, HopfieldSoftmax
11
+
12
+ from torch.cuda.amp import autocast
13
+ import yaml
14
+ from transformers import PreTrainedModel, PretrainedConfig
15
+ from transformers.modeling_outputs import MaskedLMOutput, BaseModelOutput
16
+
17
+ class BertEnergyConfig(PretrainedConfig):
18
+
19
+ model_type = "bert_energy"
20
+
21
+ def __init__(self, config=None, path=None, vocabulary_size=50, num_layers=12, num_heads=12, forward_memories=2048, embedding_dim=768, activation="relu",positional=True, bias=True, tie_weights=True, alpha=1.0,
22
+ beta=1., layer_norm=1e-05, dropout=0.0, block_size=512, share_layers=False, compile=False, pad_idx=None, **kwargs):
23
+
24
+ self.vocabulary_size = vocabulary_size
25
+ self.num_layers = num_layers
26
+ self.num_heads = num_heads
27
+ self.activation = activation
28
+ self.positional = positional
29
+ self.tie_weights = tie_weights
30
+ self.bias = bias
31
+ self.forward_memories = forward_memories
32
+ self.embedding_dim = embedding_dim
33
+ self.share_layers = share_layers
34
+ self.alpha = alpha
35
+ self.beta = beta
36
+ self.layer_norm = float(layer_norm)
37
+ self.dropout = dropout
38
+ self.block_size = block_size
39
+ self.compile = compile
40
+ self.pad_idx = pad_idx
41
+
42
+ if config is not None:
43
+ for key,value in config.to_dict():
44
+ if key.lower() in self.__dict__.keys():
45
+ print(key, file=sys.stderr)
46
+ setattr(self,key.lower(),value)
47
+
48
+ elif path is not None:
49
+ if path.endswith(".yaml"):
50
+ with open(path) as istream:
51
+ config = yaml.safe_load(istream)
52
+ for key,value in config.items():
53
+ print(key)
54
+ if key.lower() in self.__dict__.keys():
55
+ setattr(self,key.lower(),value)
56
+ else:
57
+ raise NotImplementedError
58
+ super().__init__(**kwargs)
mlm.py ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import sqrt,log
2
+ import sys
3
+ import torch
4
+ import torch.nn as nn
5
+ from torch.nn.functional import softmax,relu,linear, gelu
6
+ from common import PositionalEncoding
7
+ from hopfield import HopfieldLayer, HopfieldMHA, HopfieldReLU, HopfieldSoftmax
8
+ from configuration_energy import BertEnergyConfig
9
+ from torch.cuda.amp import autocast
10
+ import yaml
11
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
12
+
13
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
14
+ from transformers import PreTrainedModel, PretrainedConfig
15
+ from transformers.modeling_outputs import MaskedLMOutput, BaseModelOutput
16
+
17
+ ACT2FN={'relu': relu, 'gelu': gelu, 'softmax': softmax}
18
+
19
+ class BertModel(PreTrainedModel):
20
+ """ Backbone of standard BERT model
21
+ outputs : last hidden state, history"""
22
+
23
+ config_class = BertEnergyConfig
24
+
25
+ def __init__(self, config, add_pooling_layer=True, pad_idx=None, **kwargs):
26
+ super().__init__(config)
27
+
28
+ self.Emb_in = nn.Embedding(config.vocabulary_size, config.embedding_dim, padding_idx=pad_idx)
29
+ self.posn = PositionalEncoding(config.embedding_dim, max_len=config.block_size,dropout=config.dropout) if config.positional else None
30
+
31
+ if config.share_layers: # ALBERT config
32
+ self.embedding_hidden_in = nn.Linear(config.embedding_dim, config.forward_memories) if config.share_layers else None # Albert uses two matrices instead of one for embeddings see 3.1 in Albert paper
33
+ # Albert normalise and penalise embeddings
34
+ self.embed_norm = nn.LayerNorm(config.embedding_dim, eps=config.layer_norm)
35
+ self.embed_dropout = nn.Dropout(config.dropout)
36
+
37
+
38
+ self.num_layers = config.num_layers
39
+ self.share_layers = config.share_layers
40
+
41
+ if config.share_layers:
42
+ layer = nn.TransformerEncoderLayer(config.forward_memories,
43
+ config.num_heads,
44
+ activation=config.activation,
45
+ dim_feedforward=config.forward_memories*4,
46
+ dropout=config.dropout,
47
+ layer_norm_eps=config.layer_norm,
48
+ batch_first=True,
49
+ norm_first=True,
50
+ )
51
+ self.layers = nn.ModuleList([layer])
52
+
53
+ else:
54
+ self.layers = nn.ModuleList([nn.TransformerEncoderLayer(config.embedding_dim,
55
+ config.num_heads,
56
+ dim_feedforward=config.forward_memories*4,
57
+ dropout=config.dropout,
58
+ layer_norm_eps=config.layer_norm,
59
+ batch_first=True,
60
+ norm_first=True,
61
+ ) for _ in range(config.num_layers)])
62
+
63
+ def forward(self,input_ids, attention_mask=None, **kwargs):
64
+ """ Warning : expect attention mask with 0 pad tokens -> mismatch Pytorch/HF tokenizer"""
65
+
66
+ xbatch = self.Emb_in(input_ids)
67
+
68
+ if self.posn:
69
+ X = xbatch + self.posn(xbatch)
70
+ else:
71
+ X = xbatch
72
+
73
+
74
+ if self.share_layers:
75
+ X = self.embed_norm(X)
76
+ X = self.embed_dropout(X)
77
+ X = self.embedding_hidden_in(X)
78
+
79
+ history = None if self.training else [X]
80
+
81
+ # WARNING
82
+ attention_mask = ~attention_mask.bool() # Mismatch between HF tokenizer and Torch attention mask https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html#torch.nn.Transformer
83
+ for i in range(self.num_layers):
84
+ if self.share_layers:
85
+ layer = self.layers[0]
86
+ else:
87
+ layer = self.layers[i]
88
+ X = layer(X, src_key_padding_mask=attention_mask)
89
+
90
+ if not self.training:
91
+ history.append(X)
92
+
93
+ # TODO add return attention
94
+ return BaseModelOutput(last_hidden_state=X,
95
+ hidden_states=history,
96
+ attentions=None)
97
+
98
+ class BertModelForMaskedLM(PreTrainedModel):
99
+ """ Bert model to be trained on the MLM task.
100
+ Based on the backbone Bert model + projection on the vocabulary with tied weight and norm
101
+ outputs: cross entropy loss / logits / hidden states
102
+ """
103
+
104
+ config_class = BertEnergyConfig
105
+ ignore_index = -100
106
+
107
+ _tied_weights_keys = ["Emb_out.weight", "Emb_out.bias"]
108
+
109
+ def __init__(self, config, add_pooling_layer=True, pad_idx=None):
110
+ super().__init__(config)
111
+ self.config = config
112
+
113
+ self.model = BertModel(config, pad_idx=pad_idx)
114
+
115
+ self.norm = nn.LayerNorm(config.embedding_dim, eps=config.layer_norm)
116
+ self.dense = nn.Linear(config.forward_memories, config.embedding_dim)
117
+ self.activation = ACT2FN[config.activation]
118
+ """
119
+ if config.tie_weights:
120
+ self.Emb_out = nn.Linear(config.embedding_dim, config.vocabulary_size, bias=False)
121
+ self.tie_weights()
122
+ else:
123
+ self.Emb_out = nn.Linear(config.embedding_dim, config.vocabulary_size)
124
+ self.bias = nn.Parameter(torch.zeros(config.vocabulary_size))
125
+ self.Emb_out.bias = self.bias
126
+ """
127
+ self.Emb_out = nn.Linear(config.forward_memories, config.vocabulary_size)
128
+ self.bias = nn.Parameter(torch.zeros(config.vocabulary_size))
129
+ self.Emb_out.bias = self.bias
130
+
131
+ def get_input_embeddings(self):
132
+ return self.model.Emb_in
133
+
134
+ def set_output_embeddings(self, new_embeddings):
135
+ self.Emb_out = new_embeddings
136
+
137
+ def forward(self,input_ids, attention_mask=None, labels=None, **kwargs):
138
+
139
+ outputs = self.model(input_ids, attention_mask, **kwargs)
140
+ last_hidden_state = outputs.last_hidden_state
141
+ hidden_states = outputs.hidden_states
142
+ attentions = outputs.attentions
143
+
144
+ last_hidden_state = self.dense(last_hidden_state)
145
+ last_hidden_state = self.activation(last_hidden_state)
146
+ last_hidden_state = self.norm(last_hidden_state)
147
+
148
+ """
149
+ if self.config.tie_weights:
150
+ logits = last_hidden_state @ self.Emb_out.weight.transpose(-1,-2)
151
+ else:
152
+ logits = self.Emb_out(last_hidden_state)
153
+ """
154
+
155
+ logits = self.Emb_out(last_hidden_state)
156
+
157
+ loss = None
158
+
159
+ if labels is not None:
160
+ loss_fct = CrossEntropyLoss()
161
+ loss = loss_fct(logits.view(-1, self.config.vocabulary_size), labels.view(-1))
162
+
163
+ return MaskedLMOutput(loss=loss,
164
+ logits=logits,
165
+ hidden_states=hidden_states,
166
+ attentions=attentions)
167
+
168
+
169
+ class BertModelForSequenceClassification(PreTrainedModel):
170
+ """ Bert model to be trained on Sequence classification tasks.
171
+ Based on the backbone Bert model + projection on the vocabulary with tied weight and norm
172
+ outputs: cross entropy loss / logits / hidden states
173
+ """
174
+
175
+ config_class = BertEnergyConfig
176
+ ignore_index = -100
177
+
178
+ def __init__(self, config, add_pooling_layer=True, pad_idx=None,
179
+ num_labels=2, classifier_dropout=None, return_dict=True):
180
+ super().__init__(config)
181
+ self.config = config
182
+ self.num_labels = num_labels
183
+ self.classifier_dropout = classifier_dropout
184
+ self.return_dict = return_dict
185
+
186
+ self.model = BertModel(config, pad_idx=pad_idx)
187
+ self.dense = nn.Linear(config.forward_memories, config.forward_memories)
188
+ classifier_dropout = (
189
+ classifier_dropout if classifier_dropout is not None else config.dropout
190
+ )
191
+ self.dropout = nn.Dropout(classifier_dropout)
192
+ self.classifier = nn.Linear(config.forward_memories,num_labels)
193
+ self.norm = nn.LayerNorm(config.embedding_dim)
194
+
195
+ #self.Emb_out = nn.Linear(config.embedding_dim, config.vocabulary_size, bias=False)
196
+ #self.Emb_out.weight = self.model.Emb_in.weight # weight tying
197
+
198
+ def forward(self,input_ids, labels=None, return_dict=False, **kwargs):
199
+
200
+ outputs = self.model(input_ids, **kwargs)
201
+ last_hidden_state = self.norm(outputs.last_hidden_state)
202
+ # Code from roberta : https://github.com/huggingface/transformers/blob/v4.39.3/src/transformers/models/roberta/modeling_roberta.py#L1426
203
+ x = last_hidden_state[:, 0, :] # take <s> token (equiv. to [CLS])
204
+ x = self.dropout(x)
205
+ x = self.dense(x)
206
+ x = torch.tanh(x)
207
+ x = self.dropout(x)
208
+
209
+ logits = self.classifier(x)
210
+ hidden_states = outputs.hidden_states
211
+ attentions = outputs.attentions
212
+
213
+ loss = None
214
+
215
+ if labels is not None:
216
+ # move labels to correct device to enable model parallelism
217
+ labels = labels.to(logits.device)
218
+ if self.config.problem_type is None:
219
+ if self.num_labels == 1:
220
+ self.config.problem_type = "regression"
221
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
222
+ self.config.problem_type = "single_label_classification"
223
+ else:
224
+ self.config.problem_type = "multi_label_classification"
225
+
226
+ if self.config.problem_type == "regression":
227
+ loss_fct = MSELoss()
228
+ if self.num_labels == 1:
229
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
230
+ else:
231
+ loss = loss_fct(logits, labels)
232
+ elif self.config.problem_type == "single_label_classification":
233
+ loss_fct = CrossEntropyLoss()
234
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
235
+ elif self.config.problem_type == "multi_label_classification":
236
+ loss_fct = BCEWithLogitsLoss()
237
+ loss = loss_fct(logits, labels)
238
+
239
+ if not return_dict:
240
+ output = (logits,) + outputs[2:]
241
+ return ((loss,) + output) if loss is not None else output
242
+
243
+ return SequenceClassifierOutput(
244
+ loss=loss,
245
+ logits=logits,
246
+ hidden_states=outputs.hidden_states,
247
+ attentions=outputs.attentions,
248
+ )
249
+
250
+ def compute_loss(self, logits, labels):
251
+ # code from https://github.com/huggingface/transformers/blob/main/src/transformers/trainer_pt_utils.py#L494
252
+ log_probs = -nn.functional.log_softmax(logits, dim=-1)
253
+ if labels.dim() == log_probs.dim() - 1:
254
+ labels = labels.unsqueeze(-1)
255
+
256
+ padding_mask = labels.eq(self.ignore_index)
257
+ # In case the ignore_index is -100, the gather will fail, so we replace labels by 0. The padding_mask
258
+ # will ignore them in any case.
259
+ labels = torch.clamp(labels, min=0)
260
+ nll_loss = log_probs.gather(dim=-1, index=labels)
261
+ nll_loss.masked_fill_(padding_mask, 0.0)
262
+ num_active_elements = padding_mask.numel() - padding_mask.long().sum()
263
+ nll_loss = nll_loss.sum() / num_active_elements
264
+ return nll_loss
265
+
266
+
267
+ class BertEnergyModel(PreTrainedModel):
268
+
269
+ config_class = BertEnergyConfig
270
+
271
+ def __init__(self, config, add_pooling_layer=True, pad_idx=None, **kwargs):
272
+ super().__init__(config)
273
+
274
+ self.Emb_in = nn.Embedding(config.vocabulary_size, config.embedding_dim, padding_idx=pad_idx)
275
+ self.posn = PositionalEncoding(config.embedding_dim,max_len=config.block_size,dropout=config.dropout) if config.positional else None
276
+
277
+ self.num_layers = config.num_layers
278
+ self.layer = HopfieldLayer(config.embedding_dim,config.num_heads,forward_memories=config.forward_memories,forward_activation=config.activation,bias=config.bias,beta=config.beta,dropout=config.dropout)
279
+
280
+ self.alpha = config.alpha
281
+
282
+ def forward(self,input_ids, attention_mask=None, **kwargs):
283
+
284
+ xbatch = self.Emb_in(input_ids)
285
+
286
+ if self.posn:
287
+ X = xbatch + self.posn(xbatch)
288
+ else:
289
+ X = xbatch
290
+
291
+ history = None if self.training else [X]
292
+
293
+ for _ in range(self.num_layers):
294
+ #TODO add src_key pad attention mask
295
+ X = X - self.alpha * self.layer(X, src_key_padding_mask=attention_mask, is_causal=False)
296
+ if not self.training:
297
+ history.append(X)
298
+
299
+ return BaseModelOutput(last_hidden_state=X,
300
+ hidden_states=history,
301
+ attentions=None)
302
+
303
+
304
+ class BertEnergyModelForMaskedLM(PreTrainedModel):
305
+
306
+ config_class = BertEnergyConfig
307
+ ignore_index = -100
308
+
309
+ _tied_weights_keys = ["Emb_out.weight", "Emb_out.bias"]
310
+
311
+ def __init__(self, config, add_pooling_layer=True, pad_idx=None):
312
+ super().__init__(config)
313
+ self.config = config
314
+
315
+ self.model = BertEnergyModel(config, pad_idx=pad_idx)
316
+
317
+ self.norm = nn.LayerNorm(config.embedding_dim, eps=config.layer_norm)
318
+ self.dense = nn.Linear(config.embedding_dim, config.embedding_dim)
319
+ self.activation = ACT2FN[config.activation]
320
+
321
+ self.Emb_out = nn.Linear(config.embedding_dim, config.vocabulary_size)
322
+ self.bias = nn.Parameter(torch.zeros(config.vocabulary_size))
323
+ self.Emb_out.bias = self.bias
324
+
325
+
326
+ def get_input_embeddings(self):
327
+ return self.model.Emb_in
328
+
329
+ def set_output_embeddings(self, new_embeddings):
330
+ self.Emb_out = new_embeddings
331
+
332
+ def forward(self,input_ids, attention_mask=None, labels=None, **kwargs ):
333
+
334
+ outputs = self.model(input_ids , attention_mask=attention_mask)
335
+ last_hidden_state = outputs.last_hidden_state
336
+ hidden_states = outputs.hidden_states
337
+ attentions = outputs.attentions
338
+
339
+ last_hidden_state = self.dense(last_hidden_state)
340
+ last_hidden_state = gelu(last_hidden_state) #XXX
341
+ last_hidden_state = self.norm(last_hidden_state)
342
+
343
+ #logits = self.norm(last_hidden_state) @ self.Emb_out.weight.transpose(-1,-2)
344
+ if self.config.tie_weights:
345
+ logits = last_hidden_state @ self.Emb_out.weight.transpose(-1,-2)
346
+ else:
347
+ logits = self.Emb_out(last_hidden_state)
348
+
349
+ loss = None
350
+ hidden_states = hidden_states
351
+ attentions = None
352
+
353
+ #if labels is not None:
354
+ # loss = self.compute_loss(logits, labels)
355
+ if labels is not None:
356
+ loss_fct = CrossEntropyLoss()
357
+ loss = loss_fct(logits.view(-1, self.config.vocabulary_size), labels.view(-1))
358
+
359
+ return MaskedLMOutput(loss=loss,
360
+ logits=logits,
361
+ hidden_states=hidden_states,
362
+ attentions=attentions)
363
+
364
+ if __name__ == '__main__':
365
+
366
+ def grads(f, x):
367
+ """ Autograd used for the energy """
368
+ return torch.func.jacrev(f)(x)
369
+
370
+
371
+ #from test import *
372
+ x = torch.randn(1,10)
373
+ input_ids = torch.tensor([[3,12,44, 2]])
374
+
375
+ #test relu
376
+ #print('relu')
377
+ #hrelu = HopfieldReLU(10,4,bias=False)
378
+ #print(hrelu(x),hrelu.energy(x))
379
+ #print(grads(hrelu.energy,x))
380
+
381
+ #test softmax
382
+ #print('softmax')
383
+ #hsoftmax = HopfieldSoftmax(10,4,bias=None)
384
+ #print(hsoftmax(x),hsoftmax.energy(x))
385
+ #print(grads(hsoftmax.energy,x))
386
+
387
+ #test MHA
388
+ #print('mha')
389
+ #mha = HopfieldMHA(15,3)
390
+ #X = torch.randn(2,4,15)
391
+ #causal = True
392
+ #print(mha(X,is_causal=causal),mha.energy(X,is_causal=causal))
393
+ #print()
394
+ #print('=== Ref=== ')
395
+ #for x in X: #autograd breaks with higher order tensors
396
+ # print(grads(lambda y: mha.energy(y,is_causal=causal) ,x))
397
+ config = HopfieldConfig(path="../lmconfig.yaml")
398
+ print(config)
399
+ #exit()
400
+ mdl = HFHopfieldModel(config)
401
+ mdl.eval()
402
+ #print(mdl)
403
+ out = mdl(input_ids)
404
+ print(out[0].mean())
405
+ mdl.save_pretrained("test_checkpoint")
406
+ reloaded = HFHopfieldModel.from_pretrained("test_checkpoint")
407
+ out_reloaded = reloaded(input_ids)
408
+ print(out_reloaded[0].mean())
409
+ reloaded.to("cuda:0")
410
+ print(reloaded(input_ids.to("cuda:0"))[0])
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84b9d586b1e5d0e9662d1ca8cacd558a323da7d6c30ac29efd6b2678ae51c923
3
+ size 202676920
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "[SEP]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "mask_token": {
17
+ "content": "[MASK]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "pad_token": {
24
+ "content": "[PAD]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "[SEP]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "mask_token": {
17
+ "content": "[MASK]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "pad_token": {
24
+ "content": "[PAD]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[UNK]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[PAD]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "eos_token": "[SEP]",
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "pad_token": "[PAD]",
51
+ "tokenizer_class": "PreTrainedTokenizerFast",
52
+ "unk_token": "[UNK]"
53
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[UNK]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[PAD]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "eos_token": "[SEP]",
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "pad_token": "[PAD]",
52
+ "tokenizer_class": "PreTrainedTokenizerFast",
53
+ "unk_token": "[UNK]"
54
+ }