metadata
language:
- en
library_name: transformers
tags:
- mergekit
- merge
- llama-3.1
- roleplay
- function calling
base_model:
- meta-llama/Llama-3.1-8B-Instruct
- akjindal53244/Llama-3.1-Storm-8B
- arcee-ai/Llama-3.1-SuperNova-Lite
- Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
model-index:
- name: Llama-3.1-8B-Instruct-Zeus
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 79.41
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/Llama-3.1-8B-Instruct-Zeus
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 31.39
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/Llama-3.1-8B-Instruct-Zeus
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 19.18
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/Llama-3.1-8B-Instruct-Zeus
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.82
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/Llama-3.1-8B-Instruct-Zeus
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.57
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/Llama-3.1-8B-Instruct-Zeus
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.14
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/Llama-3.1-8B-Instruct-Zeus
name: Open LLM Leaderboard
license: apache-2.0
pipeline_tag: text-generation
co2_eq_emissions:
emissions: 0.69
source: Open LLM Leaderboard
training_type: fine-tuning
new_version: T145/ZEUS-8B-V2
ZEUS
Taking inspiration from Dampfinchen/Llama-3.1-8B-Ultra-Instruct and brucethemoose, the goal of this merge is to create an abliterated, conversational AI within 8B parameters that's coherent over long conversations. Using "Ultra-Instruct" as a baseline (which has problems with grammar and coherent conversations), preliminary results seem to show these goals are met. Expect responses in the Markdown format by default.
Merge Details
Merge Method
This model was merged using the DARE TIES merge method using meta-llama/Llama-3.1-8B-Instruct as a base.
Models Merged
The following models were included in the merge:
- akjindal53244/Llama-3.1-Storm-8B
- arcee-ai/Llama-3.1-SuperNova-Lite
- Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
Configuration
The following YAML configuration was used to produce this model:
base_model: meta-llama/Llama-3.1-8B-Instruct
dtype: bfloat16
merge_method: dare_ties
parameters:
int8_mask: 1.0
slices:
- sources:
- layer_range: [0, 32]
model: akjindal53244/Llama-3.1-Storm-8B
parameters:
density: 0.7
weight: 0.2
- layer_range: [0, 32]
model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
density: 0.7
weight: 0.3
- layer_range: [0, 32]
model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
parameters:
density: 0.7
weight: 0.5
- layer_range: [0, 32]
model: meta-llama/Llama-3.1-8B-Instruct
tokenizer_source: meta-llama/Llama-3.1-8B-Instruct
Open LLM Leaderboard Evaluation Results
Detailed results can be found here!
Metric | Value |
---|---|
Avg. | 29.59 |
IFEval (0-Shot) | 79.41 |
BBH (3-Shot) | 31.39 |
MATH Lvl 5 (4-Shot) | 19.18 |
GPQA (0-shot) | 6.82 |
MuSR (0-shot) | 8.57 |
MMLU-PRO (5-shot) | 32.14 |
- Falls about 1 point behind "Ultra-Instruct" on IFEval and BBH, but everything else is a significant improvement.