KRONOS-8B-V6 / README.md
T145's picture
Adding Evaluation Results (#1)
d8b3a42 verified
---
base_model:
- unsloth/Meta-Llama-3.1-8B-Instruct
- T145/KRONOS-8B-V1-P3
- T145/KRONOS-8B-V1-P2
- mukaj/Llama-3.1-Hawkish-8B
library_name: transformers
tags:
- mergekit
- merge
model-index:
- name: KRONOS-8B-V6
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 70.22
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/KRONOS-8B-V6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.66
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/KRONOS-8B-V6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 5.51
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/KRONOS-8B-V6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.91
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/KRONOS-8B-V6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.81
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/KRONOS-8B-V6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.79
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/KRONOS-8B-V6
name: Open LLM Leaderboard
---
# Untitled Model (1)
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) as a base.
### Models Merged
The following models were included in the merge:
* [T145/KRONOS-8B-V1-P3](https://huggingface.co/T145/KRONOS-8B-V1-P3)
* [T145/KRONOS-8B-V1-P2](https://huggingface.co/T145/KRONOS-8B-V1-P2)
* [mukaj/Llama-3.1-Hawkish-8B](https://huggingface.co/mukaj/Llama-3.1-Hawkish-8B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
dtype: bfloat16
merge_method: ties
parameters:
density: 1.0
weight: 1.0
slices:
- sources:
- layer_range: [0, 32]
model: T145/KRONOS-8B-V1-P2
parameters:
density: 1.0
weight: 1.0
- layer_range: [0, 32]
model: T145/KRONOS-8B-V1-P3
parameters:
density: 1.0
weight: 1.0
- layer_range: [0, 32]
model: mukaj/Llama-3.1-Hawkish-8B
parameters:
density: 1.0
weight: 1.0
- layer_range: [0, 32]
model: unsloth/Meta-Llama-3.1-8B-Instruct
tokenizer_source: base
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/T145__KRONOS-8B-V6-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=T145/KRONOS-8B-V6)!
| Metric |% Value|
|-------------------|------:|
|Avg. | 24.49|
|IFEval (0-Shot) | 70.22|
|BBH (3-Shot) | 29.66|
|MATH Lvl 5 (4-Shot)| 5.51|
|GPQA (0-shot) | 3.91|
|MuSR (0-shot) | 9.81|
|MMLU-PRO (5-shot) | 27.79|