LayoutLM_Invoice6 / README.md
Szczotar93's picture
End of training
bb3d050 verified
|
raw
history blame
7.51 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - layoutlmv3
model-index:
  - name: LayoutLM_Invoice6
    results: []

LayoutLM_Invoice6

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0219
  • Ax Amount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
  • Endor Name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
  • Nvoice Number: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
  • Otal Amount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
  • Ustomer Address: {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11}
  • Ustomer Name: {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11}
  • Overall Precision: 0.9846
  • Overall Recall: 0.9697
  • Overall F1: 0.9771
  • Overall Accuracy: 0.9939

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 6
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 300

Training results

Training Loss Epoch Step Validation Loss Ax Amount Endor Name Nvoice Number Otal Amount Ustomer Address Ustomer Name Overall Precision Overall Recall Overall F1 Overall Accuracy
0.8763 6.25 50 0.2290 {'precision': 1.0, 'recall': 0.5454545454545454, 'f1': 0.7058823529411764, 'number': 11} {'precision': 0.8181818181818182, 'recall': 0.8181818181818182, 'f1': 0.8181818181818182, 'number': 11} {'precision': 1.0, 'recall': 0.8181818181818182, 'f1': 0.9, 'number': 11} {'precision': 0.5454545454545454, 'recall': 0.5454545454545454, 'f1': 0.5454545454545454, 'number': 11} {'precision': 0.7692307692307693, 'recall': 0.9090909090909091, 'f1': 0.8333333333333333, 'number': 11} {'precision': 0.75, 'recall': 0.8181818181818182, 'f1': 0.7826086956521738, 'number': 11} 0.7903 0.7424 0.7656 0.9666
0.1315 12.5 100 0.0312 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} 0.9701 0.9848 0.9774 0.9970
0.0239 18.75 150 0.0371 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} 0.9846 0.9697 0.9771 0.9939
0.0098 25.0 200 0.0450 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} 0.9846 0.9697 0.9771 0.9939
0.0085 31.25 250 0.0360 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} 0.9846 0.9697 0.9771 0.9939
0.0065 37.5 300 0.0219 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} 0.9846 0.9697 0.9771 0.9939

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.2.0+cpu
  • Datasets 2.12.0
  • Tokenizers 0.13.2