SwastikM's picture
Update README.md
11d61c0 verified
|
raw
history blame
3.14 kB
metadata
library_name: peft
base_model: TheBloke/Llama-2-7b-Chat-GPTQ
pipeline_tag: text-generation
inference: false
license: openrail
language:
  - en
datasets:
  - flytech/python-codes-25k
tags:
  - text2code
  - LoRA
  - GPTQ
  - Llama-2-7B-Chat
  - text2python
  - instruction2code

Llama-2-7b-Chat-GPTQ fine-tuned on PYTHON-CODES-25K

Generate Python code that accomplishes the task instructed.

LoRA Adpater Head

Description

Parameter Efficient Finetuning(PEFT) a 4bit quantized Llama-2-7b-Chat from TheBloke/Llama-2-7b-Chat-GPTQ on flytech/python-codes-25k dataset.

Intended uses & limitations

Addressing the efficay of Quantization and PEFT. Implemented as a personal Project.

How to use

The quantized model is finetuned as PEFT. We have the trained Adapter.
Merging LoRA adapated with GPTQ quantized model is not yet supported.
So instead of loading a single finetuned model, we need to load the mase model and merge the finetuned adapter on top.
instruction = """model_input = "Help me set up my daily to-do list!""""
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM

config = PeftConfig.from_pretrained("SwastikM/Llama-2-7B-Chat-text2code")
model = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7b-Chat-GPTQ")
model = PeftModel.from_pretrained(model, "SwastikM/Llama-2-7B-Chat-text2code")
tokenizer = AutoTokenizer.from_pretrained("SwastikM/Llama-2-7B-Chat-text2code")

inputs = tokenizer(instruction, return_tensors="pt").input_ids.to('cuda')
outputs = model.generate(inputs, max_new_tokens=500, do_sample=False, num_beams=1)
code = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(code)

Training Details

Training Data

gretelai/synthetic_text_to_sql

Training Procedure

HuggingFace Accelerate with Training Loop.

Training Hyperparameters

  • Optimizer: AdamW
  • lr: 2e-5
  • decay: linear
  • batch_size: 4
  • gradient_accumulation_steps: 8
  • global_step: 625

Hardware

  • GPU: P100

Additional Information

Acknowledgment

Thanks to @AMerve Noyan for precise intro. Thanks to @HuggungFace Team for coding guide on gptq.

Model Card Authors

Swastik Maiti