Regression_xlnet_aug_CustomLoss

This model is a fine-tuned version of xlnet-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2430
  • Train Mae: 0.5316
  • Train Mse: 0.4353
  • Train R2-score: 0.4207
  • Validation Loss: 0.2455
  • Validation Mae: 0.5751
  • Validation Mse: 0.4288
  • Validation R2-score: 0.6784
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Mae Train Mse Train R2-score Validation Loss Validation Mae Validation Mse Validation R2-score Epoch
0.2950 0.5789 0.4896 0.6909 0.2512 0.5341 0.4801 0.7603 0
0.2659 0.5516 0.4538 0.7145 0.2828 0.5680 0.5282 0.7477 1
0.2656 0.5492 0.4587 0.6858 0.2337 0.5345 0.4412 0.7431 2
0.2563 0.5484 0.4490 0.7247 0.2413 0.5202 0.4619 0.7581 3
0.2589 0.5511 0.4542 0.6757 0.2411 0.5199 0.4615 0.7580 4
0.2537 0.5407 0.4437 0.7605 0.2359 0.5244 0.4495 0.7517 5
0.2494 0.5385 0.4399 0.7668 0.2510 0.5821 0.4301 0.6621 6
0.2495 0.5403 0.4424 0.7765 0.2360 0.5242 0.4496 0.7519 7
0.2501 0.5394 0.4383 0.5209 0.2349 0.5279 0.4464 0.7491 8
0.2446 0.5343 0.4346 0.7534 0.2366 0.5585 0.4298 0.7105 9
0.2439 0.5316 0.4323 0.7561 0.2543 0.5376 0.4853 0.7599 10
0.2415 0.5348 0.4330 0.7928 0.2341 0.5316 0.4434 0.7459 11
0.2408 0.5323 0.4289 0.7827 0.2346 0.5291 0.4454 0.7481 12
0.2499 0.5392 0.4410 0.6008 0.2364 0.5230 0.4508 0.7527 13
0.2430 0.5316 0.4353 0.4207 0.2455 0.5751 0.4288 0.6784 14

Framework versions

  • Transformers 4.28.1
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.