Regression_xlnet_NOaug_MSEloss

This model is a fine-tuned version of xlnet-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6460
  • Mse: 0.6460
  • Mae: 0.7041
  • R2: -0.1893
  • Accuracy: 0.2632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-12
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Mse Mae R2 Accuracy
No log 1.0 33 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 2.0 66 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 3.0 99 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 4.0 132 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 5.0 165 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 6.0 198 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 7.0 231 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 8.0 264 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 9.0 297 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 10.0 330 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 11.0 363 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 12.0 396 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 13.0 429 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 14.0 462 0.7342 0.7342 0.7706 -1.1938 0.2703
No log 15.0 495 0.7342 0.7342 0.7706 -1.1938 0.2703

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.