File size: 2,040 Bytes
3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 3593675 289c306 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: peft
license: apache-2.0
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
tags:
- generated_from_trainer
model-index:
- name: suryagpt-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# suryagpt-ft
This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7170
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.9479 | 0.9412 | 8 | 2.9026 |
| 2.0922 | 2.0 | 17 | 1.5301 |
| 1.4095 | 2.9412 | 25 | 1.1705 |
| 1.0244 | 4.0 | 34 | 1.0004 |
| 1.0198 | 4.9412 | 42 | 0.9060 |
| 0.8214 | 6.0 | 51 | 0.8174 |
| 0.8465 | 6.9412 | 59 | 0.7645 |
| 0.7057 | 8.0 | 68 | 0.7328 |
| 0.7711 | 8.9412 | 76 | 0.7200 |
| 0.5994 | 9.4118 | 80 | 0.7170 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3 |